"Magic Sets" in ZFC + MA(σ -centred)

Besprechung am 21. Dezember

Eine Menge $D \subseteq \mathbb{R}$ heisst **dicht**, falls für jede offene Menge $O \subseteq \mathbb{R}$ gilt: $D \cap O \neq \emptyset$. Eine Menge $Y \subseteq \mathbb{R}$ ist **nirgends dicht** falls $\operatorname{int}(\bar{Y}) = \emptyset$, oder anders ausgedrückt, falls $\mathbb{R} \setminus Y$ eine offen dichte Menge enthält. Eine Menge $X \subseteq \mathbb{R}$ ist **mager**, falls X eine abzählbare Vereinigung nirgends dichter Mengen ist. Anders ausgedrückt, $X \subseteq \mathbb{R}$ ist mager genau dann wenn es eine abzählbare Familie $\{W_n : n \in \omega\}$ offen dichter Mengen gibt mit

$$\left(\bigcap_{n\in\omega}W_n\right)\cap X=\emptyset.$$

Weiter sei

$$\mathcal{M} := \{ X \subseteq \mathbb{R} : X \text{ ist mager} \}$$

das Ideal der mageren Mengen, und sei

$$\operatorname{add}(\mathscr{M}) := \min \left\{ |\mathscr{F}| : \mathscr{F} \subseteq \mathscr{M} \wedge \cup \mathscr{F} \notin \mathscr{M} \right\}$$

die additivity-number der mageren Mengen.

Sei $\{O_k: k \in \omega\}$ eine abzählbare Basis der Topologie auf \mathbb{R} , zum Beispiel die Menge der offenen Intervalle mit rationalen Endpunkten. Für eine gegebene Familie $\mathscr{E} = \{U_\alpha \subseteq \mathbb{R} : \alpha \in \kappa < \mathfrak{c}\}$ von offen dichten Mengen definieren wir eine Partialordnung (P, \leq) wie folgt: Die Bedingungen in P sind endliche Sequenzen der Form

$$p = \langle \langle Q_0, F_0 \rangle, \dots, \langle Q_{n-1}, F_{n-1} \rangle \rangle,$$

wobei für alle $i \in n$ gilt: $F_i \in \text{fin}(\kappa)$, $Q_i = \bigcup_{k \in K} O_k$ für ein $K \in \text{fin}(\omega)$, und $Q_i \subseteq \bigcap_{\alpha \in F_i} U_\alpha$. Ist $p = \langle \langle Q_0, F_0 \rangle, \dots, \langle Q_{n-1}, F_{n-1} \rangle \rangle$, so sei dom(p) := n, und für $i \in n$ sei $p_i = \langle Q_i, F_i \rangle$, $p_i(0) = Q_i$, und $p_i(1) = F_i$.

Für
$$p = \langle \langle Q_0, F_0 \rangle, \dots, \langle Q_{n-1}, F_{n-1} \rangle \rangle$$
 und $q = \langle \langle Q'_0, F'_0 \rangle, \dots, \langle Q'_{m-1}, F'_{m-1} \rangle \rangle$, sei $p \leq q : \iff n \leq m \land \forall i \in n (F_i \subseteq F'_i \land Q_i \subseteq Q'_i).$

- **35.** (a) Zeige: $\omega_1 \leq \operatorname{add}(\mathcal{M}) \leq \mathfrak{c}$.
 - (b) Zeige: (P, <) ist σ -centred.
 - (c) Für $\alpha \in \kappa$ sei

$$D_{\alpha} := \{ p \in P : \exists i \in \text{dom}(p) (\alpha \in p_i(1)) \}.$$

Zeige: Für jedes $\alpha \in \kappa$ ist D_{α} offen dicht in P.

(d) Für $i, k \in \omega$ sei

$$E_{i,k} := \{ p \in P : i \in \text{dom}(p) \land p_i(0) \cap O_k \neq \emptyset \}.$$

Zeige: Für alle $i, k \in \omega$ ist $E_{i,k}$ offen dicht in P.

(e) Sei $\mathscr{D}:=\{D_\alpha:\alpha\in\kappa\}\cup\{E_{i,k}:i,k\in\omega\}$. Dann ist $\mathscr{D}\subseteq P$ und $|\mathscr{D}|\leq\kappa$. Sei nun $G\subseteq P$ ein \mathscr{D} -generischer Filter, und für $n\in\omega$ sei

$$V_n := \bigcup \{Q : \exists p \in G (n \in dom(p) \land p_n(0) = Q)\}.$$

Zeige: $\bigcap_{n \in \omega} V_n \subseteq \bigcap_{\alpha \in \kappa} U_\alpha$

- (f) Zeige: $\mathsf{MA}(\sigma\text{-centred}) \Rightarrow \mathrm{add}(\mathscr{M}) = \mathfrak{c}$.
- (g) Zeige: $MA(\sigma$ -centred) impliziert (in ZFC) die Existenz einer magic set.