Axiomatische Mengenlehre

Serie 3

Ersetzungs- & Fundierungsaxiom

Besprechung am 19. Oktober

10. (a) Definiere mit Hilfe des Transfiniten Rekursionstheorems die Multiplikation von Ordinalzahlen.

Beweis. Definiere für jedes $\alpha \in \Omega$ eine Klassenfunktion $F_{\alpha} \colon V \to V$ durch

$$F_{\alpha}(x) = \begin{cases} \emptyset & \text{falls } x = \emptyset \\ x(\beta) + \alpha & \text{wen } x \text{ eine Funktion mit Domain } \beta + 1 \in \Omega \text{ ist,} \\ \bigcup_{\delta \in \beta} x(\delta) & \text{wen } x \text{ eine Funktion mit Domain } \beta \in \Omega \text{ eine Limesordinal zahl ist,} \\ \emptyset & \text{sonst} \end{cases}$$

Nach dem transfiniten Rekursionstheorem gibt es eine Klassenfunktion $G \colon \Omega \to V$ mit $G_{\alpha}(\beta) = F_{\alpha}(G_{\alpha}|_{\beta})$ für alle $\beta \in \Omega$. Wir zeigen $G_{\alpha}(\beta) = \alpha * \beta$ per Induktion über β .

Falls $\beta = \emptyset$ so ist $G_{\alpha}(\emptyset) = F_{\alpha}(\emptyset) = \emptyset = \alpha * \emptyset$. Falls $\beta = \beta' + 1$ eine Nachfolgeordinalzahl ist, gilt

$$G_{\alpha}(\beta) = F_{\alpha}(G_{\alpha}|_{\beta}) = F_{\alpha}(\gamma \mapsto \alpha * \gamma) = \alpha * \beta' + \alpha = \alpha * \beta.$$

Abschließend falls β eine Limesordinalzahl ist gilt

$$G_{\alpha}(\beta) = F_{\alpha}(G_{\alpha}|_{\beta}) = F_{\alpha}(\gamma \mapsto \alpha * \gamma) = \bigcup_{\gamma < \beta} (\alpha * \gamma) = \alpha * \beta.$$

(b) Definiere mit Hilfe des Transfiniten Rekursionstheorems die Exponentiation von Ordinalzahlen.

Beweis. Der Beweis funktioniert fast genau so wie der vorherige. Definiere für jedes $\alpha \in \Omega$ eine Klassenfunktion $F_{\alpha} \colon V \to V$ durch

$$F_{\alpha}(x) = \begin{cases} 1 & \text{falls } x = \emptyset \\ x(\beta) * \alpha & \text{wen } x \text{ eine Funktion mit Domain } \beta + 1 \in \Omega \text{ ist,} \\ \bigcup_{\delta \in \beta} x(\delta) & \text{wen } x \text{ eine Funktion mit Domain } \beta \in \Omega \text{ eine Limesordinalzahl ist,} \\ \emptyset & \text{sonst} \end{cases}$$

Nach dem transfiniten Rekursionstheorem gibt es eine Klassenfunktion $G \colon \Omega \to V$ mit $G_{\alpha}(\beta) = F_{\alpha}(G_{\alpha}|_{\beta})$ für alle $\beta \in \Omega$. Wir zeigen $G_{\alpha}(\beta) = \alpha^{\beta}$ per Induktion über β .

Falls $\beta = \emptyset$ so ist $G_{\alpha}(\emptyset) = F_{\alpha}(\emptyset) = 1 = \alpha^{\emptyset}$. Falls $\beta = \beta' + 1$ eine Nachfolgeordinalzahl ist, gilt

$$G_{\alpha}(\beta) = F_{\alpha}(G_{\alpha}|_{\beta}) = F_{\alpha}(\gamma \mapsto \alpha^{\gamma}) = \alpha^{\beta'} * \alpha = \alpha^{\beta}.$$

Abschließend falls β eine Limesordinalzahl ist gilt

$$G_{\alpha}(\beta) = F_{\alpha}(G_{\alpha}|_{\beta}) = F_{\alpha}(\gamma \mapsto \alpha^{\gamma}) = \bigcup_{\gamma < \beta} (\alpha^{\gamma}) = \alpha^{\beta}.$$

 \dashv

Zeige mit Hilfe des Fundierungsaxioms, dass für alle nicht-leeren Mengen x gilt:

$$\emptyset \in TC(x)$$

Beweis. Da $x \subseteq TC(x)$ ist insbesondere $x \neq \emptyset$. Also existiert aufgrund des Fundierungsaxioms ein $y \in TC(X)$ sodass $(y \cap TC(x)) = \emptyset$. Wen y nicht leer ist gäbe es ein $z \in y$ und da TC(x) transitiv ist wäre dann auch $z \in TC(x) \cap y$. Also ist $\emptyset = y \in TC(x)$. \dashv

12. Goodstein Sequenzen: Für $n, m \in \omega$, wobei $n \geq 2$, definieren wir die Basis-n-Repräsentation von m wie folgt: Zuerst wird m als Summe von abnehmenden Potenzen von ngeschrieben, danach werden die Exponenten in dieser Darstellung wieder als Summen von abnehmenden Potenzen von n geschrieben, und so fort.

Zum Beispiel ist die Basis-2-Repräsentation von 266:

$$2^{2^{2+1}} + 2^{2+1} + 2^1$$

Die Zahl $G_n(m)$ ist wie folgt definiert: Ist m=0, so ist $G_n(m):=0$; sonst ist $G_n(m)$ die Zahl welche wir erhalten, wenn wir n in der Basis-n-Repräsentation von m überall durch n+1 ersetzen, dann 1 subtrahieren und das Ergebnis in der Basis-(n+1)-Repräsentation schreiben. Zum Beispiel ist:

$$G_2(266) = 3^{3^{3+1}} + 3^{3+1} + 3^1 - 1 = 3^{3^{3+1}} + 3^{3+1} + 2$$

Wir definieren nun die Goodstein Sequenz für m, beginnend mit 2, durch: $m_0 = m$, $m_1 = G_2(m_0), m_2 = G_3(m_1), m_3 = G_4(m_2), \dots$

(a) Sei nun $m_0 = 266$. Schreibe die Zahlen m_1, m_2, m_3 auf und zeige, dass gilt: $m_0 < m_1 < m_2 < m_3$.

Beweis.

$$m_1 = 3^{3^{3+1}} + 3^{3+1} + 2 \approx 4, 4 * 10^{38}$$

 $m_2 = 4^{4^{4+1}} + 4^{4+1} + 1 \approx 3, 2 * 10^{616}$
 $m_1 = 5^{5^{5+1}} + 5^{5+1} \approx 2, 5 * 10^{10.921}$

 \dashv

Ersetze in der Basis-(i + 2)-Repräsentation von m_i (wobei $0 \le i \le 3$), überall die Zahl i+2 durch ω und betrachte diese Zahlen als Ordinalzahlen $\mu_0, \mu_1, \mu_2, \mu_3$.

Beweis.

$$\mu_0 = \omega^{\omega^{\omega+1}} + \omega^{\omega+1} + \omega$$

$$\mu_1 = \omega^{\omega^{\omega+1}} + \omega^{\omega+1} + 2$$

$$\mu_2 = \omega^{\omega^{\omega+1}} + \omega^{\omega+1} + 1$$

$$\mu_3 = \omega^{\omega^{\omega+1}} + \omega^{\omega+1}$$

 \dashv

(c) Zeige, dass gilt: $\mu_0 \ni \mu_1 \ni \mu_2 \ni \mu_3$.

Beweis. Da die ersten zwei Summanden gleich bleiben und der letzte kleiner wird gilt dies. \dashv (d) Zeige: $\forall m \in \omega \, \exists k \in \omega \, (m_k = 0)$.

Beweis. Für $n \in \omega$ definiere die Funktion $f_n \colon \omega \to \Omega$, die jedem $k \in \omega$ die Ordinalzahl zuordnet die entsteht wen man in der Basis-n-Repräsentation von k jedes n durch ω ersetzt. Es gilt $f_n(m) < f_n(m+1)$ für alle $m \in \omega$. Sei nun $m \in \omega$ und $(m_k)_{k \in \omega}$ die zugehörige Goodstein-Sequenz. Definiere $\mu_k = f_{k+2}(m_k)$. Es gilt $f_{k+2}(m_k+1) = f_{k+1}(m_{k-1})$. Um von m_{k-1} auf m_k zu kommen wird in der Basis k+1 Repräsentation von m_{k-1} alle k+1 durch k+2 ersetzt und dann 1 abgezogen, also hat m_k+1 die selbe Basis k+1 Repräsentation wie die Basis k+1 Repräsentation von m_{k-1} , wobei k+2 durch k+1 ersetzt wird, wen wir also diese jeweils durch ω ersetzen bekommen wir die selbe Ordinalzahl. Also

$$\mu_k = f_{k+2}(m_k) < f_{k+2}(m_k + 1) = f_{k+1}(m_{k-1}) = \mu_{k-1}.$$

Nun haben wir gezeigt, dass μ_k eine streng monoton fallende Folge von Ordinalzahlen ist, mit der Ausnahme das wen $\mu_k=0$ dann sind alle Folgeterme auch 0. Solche Folgen müssen endlich sein, also existiert ein $k\in\omega$ mit $\mu_k=0$. Da $m_k\leq\mu_k$, gilt auch $m_k=0$.