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1. Introduction

1.1. Euclidean and Unique factorisation domains. By a ring, we will always mean a commutative
ring R with an identity element 1 distinct from 0.

Example 1.1. The Gaussian integers

Z[i] = {a+ bi : a, b ∈ Z}
form a ring with the natural addition and multiplication.

Definition 1.2. An element a ∈ R is a unit if there exists b ∈ R such that ab = 1. We denote this
element by a−1. Note that a−1 is unique. We denote by R× the set of units in R; note that R× is a
group under multiplication.

Example 1.3. (Exercise) We have Z[i]× = {±1,±i}.

Definition 1.4. A ring R is an integral domain if it has no zero-divisors; i.e. if a, b ∈ R satisfy ab = 0,
then a = 0 or b = 0.

Example 1.5. The ring Z[i] is an integral domain, as it is a subring of C (which is a field, and hence
automatically an integral domain). One can also show explicitly that the product of two non-zero
Gaussian integers cannot be zero.

Definition 1.6. (1) An element r ∈ R− {0} is irreducible if it is not a unit, but if we write r = ab
for some a, b ∈ R, then one of a, b must be a unit. Otherwise r is reducible, and a, b are factors
of r.

(2) Two elements r, s ∈ R are associate if there exists u ∈ R× such that r = su. In this case we
write r ∼ s.
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Example 1.7. Define the norm map

N : Z[i]→ Z, a+ ib = a2 + b2.

I claim that 2 + i is irreducible in Z[i]. Indeed, we have N(2 + i) = 5. Suppose now that 2 + i = xy for
some x, y ∈ Z[i]. Then by the multiplicativity of the norm, we must have

N(x)N(y) = 5,

so either N(x) = 1 or N(y) = 1. But the only elements with norm 1 are the units, so we get a
contradiction.

Remark 1.8. We can easily show that any x ∈ Z[i] such that N(x) is a prime is irreducible. However,
the converse is false!

Definition 1.9. A ring R is a unique factorisation domain (UFD) if it is an integral domain, and if

(1) every non-zero element x ∈ R−R× factors as a product

x = r1 . . . rn,

where the ri are irreducible;
(2) this factorisation is unique up to units and up to reordering of the factors.

Example 1.10. Z is a unique factorisation domain.

Theorem 1.11. The ring Z[i] is a UFD.

To prove this result, we need to introduce the notion of a Euclidean domain:

Definition 1.12. Let R be an integral domain, and let φ : R → Z be a function such that φ(x) ≥ 0 for
all x ∈ R, and φ(0) = 0. Then R is a Eucliden domain if the division algorithm holds: for all x, y ∈ R,
y 6= 0, there exist q, r ∈ R such that x = qy + r and either r = 0 or φ(r) < φ(y).

Remark 1.13. The elements q and r are not required to be unique.

Proposition 1.14. Any Euclidean domain is a UFD.

Proof. See Algebra 1. �

We can now prove Theorem 1.11:

Proof. We take φ to be the norm map N . We need to show that it satisfies the axioms of Definition 1.12.
Let x, y ∈ Z[i] with y 6= 0. Let z = x

y , and let q be an element of Z[i] such that

|z − q| ≤ |z − q′|
for all q′ ∈ Z[i] (i.e. q is the lattice point closest to z.) By elementary geometry, we have |z − q| ≤ 1√

2
.

Let r = x− qy. Then

N(r) = N(x− qy) = |x− qy|2 =

∣∣∣∣y(xy − q
)∣∣∣∣2 = |y|2|z − q|2 ≤ 1

2
N(y) < N(y).

�

1.2. Solving Diophantine equations. We will now see that we can use the property of unique fac-
torisation to solve some Diophantine equations.

Problem 1.15. Determine all x, y ∈ Z which satisfy

(1) x3 = y2 + 1.

Remark 1.16. The equation (1) is an example of an elliptic curve. Elliptic curves play an important
role in modern number theory; for example, they are central to Wiles’ proof of Fermat’s Last Theorem.

Proposition 1.17. The only solution is (x, y) = (1, 0).

Proof. Suppose that (x, y) is a solution. If x is even, then

x3 ≡ 0 (mod 8) ⇒ y2 ≡ −1 (mod 8).

But this gives a contradiction since −1 is not a quadratic residue (mod 8).
Hence x is odd and y is even. Now factor (1) in Z[i]:

(y + i)(y − i) = x3.
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Claim. y + i and y− i do not have a common factor: they are relatively prime. Proof of claim: suppose
there exists α ∈ Z[i] which is not a unit such that α|(y + i) and α|(y − i). Then

α| [(y + i)− (y − i)] = 2i,

so since 2i = (1 + i)2 and 1 + i is irreducible, we deduce from unique factorisation that (1 + i)|α. Then

(1 + i)|(y + i)(y − i) = x3,

so by unique factorisation we deduce that 1+ i devides x, i.e. there exists β ∈ Z[i] such that x = (1+ i)β.
But then

x2 = xx̄ = (1 + i)(1− i)ββ̄ = 2ββ̄,

so x2 (and hence x) is even, which gives a contradiction. This proves the claim.
We now deduce from unique factorisation that each of y + i and y − i are of the form uβ3 for some

u ∈ Z[i]× and β ∈ Z[i]. Now the units in Z[i] are all perfect cubes, so y + i and y − i are both cubes in
Z[i].

Write y + i = (a+ ib)3 for some a, b ∈ Z. Then

y + i = (a3 − 3ab2) + (3a2b− b3)i ⇒ y = a(a2 − 3b2) and 1 = b(3a2 − b2).

We deduce that b = ±1. Lecture 2

(1) If b = 1, then 3a2 = 2, which is clearly impossible.
(2) If b = −1, then a = 0 ⇒ y = 0 ⇒ x = 1.

�

Remark 1.18. The proof relies crucially on the fact that unique factorisation holds in Z[i]. It is tempting
to use similar ideas in order to tackle more complicated equations.

Remark 1.19. Finding the integral solutions of the equation

x3 = y2 − 1

is much harder. Euler showed that the only non-trivial solutions (i.e. with xy 6= 0) are (x, y) = (2,±3).

Example 1.20. Let p ≥ 5 be a prime, and consider Fermat’s equation

(2) Zp = Xp + Y p.

Suppose that there exists an integer solution with p - xyz. Let ζ be a primitive pth root of unity, and
consider the ring Z[ζ]. Then (2) factorizes over Z[ζ] as

(3) zp = (x+ y)(x+ ζy)(x+ ζ2y) . . . (x+ ζp−1y).

Assume now that Z[ζ] is a UFD. It is then not difficult to prove (exercise) that the terms on the right of
(3) are pairwise relatively prime, so each of these terms can be written as urp for some unit u and some
r ∈ Z[ζ]. One can then derive a contradiction, similar to the argument above. The idea was pursued by
Lamé and Kummer in trying to prove Fermat’s last theorem. But Kummer realised that the ring Z[ζ] is
almost never a unique factorisation domain! (In fact, it is only a UFD if and only if p ≤ 19.)

Nonetheless, Kummer was able to make a lot of progress towards resolving Fermat’s Last Theorem
by suitably modifying this argument. First of all, he realized that even though unique factorization of
elements into irreducibles often fails in Z[ζ], a weaker property always holds: every ideal factors uniquely
into a product of prime ideals. This discovery was really the birth of modern algebraic number theory.
Kummer then initiated a careful study of the discrepancy between ideals of Z[ζ] and elements of Z[ζ].
This involves studying the so-called ideal class group, as well as the unit group, of the number ring Z[ζ].
In this way, Kummer was able to sufficiently understand the units, and to recover enough of a fragment
of the unique factorization property in Z[ζ], to show that Fermat’s Last Theorem holds for what are
now called “regular primes”. We will discuss all of this in more detail later in the course. In fact, it can
be fairly said that understanding the ideal class group and unit group of a number ring is our primary
objective in this class.

Remark 1.21. Already the ring Z[
√

6] does not have unique factorisation. Can you give an example?
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1.3. Field extensions. We recall some results about field extensions:

Definition 1.22. Let K ⊂ L be fields. The dimension of L as a K-vector space is the degree of the
extension L/K, denoted [L : K]. We say that the extension L of K is finite if [L : K] <∞.

Proposition 1.23. (Tower law) If F ⊂ K ⊂ L are finite field extensions, then

[L : F ] = [L : K][K : F ].

Definition 1.24. Let L/K be a field extension, and let α ∈ L. Then α is algebraic over K if there
exists a polynomial f(t) ∈ K[t] such that f(α) = 0. If no such f exists, we say that α is transcendental
over K.

Definition 1.25. If α is algebraic over K, there exists a unique monic polynomial f(t) ∈ K[t] of smallest
degree such that f(α) = 0. This polynomial is the minimal polynomial of α over K.

Definition 1.26. If L/K is a field extension and α1, . . . , αn ∈ L, we define K(α1, . . . , αn) to be the
smallest subfield of L containing α1, . . . , αn. We call this field the field obtained by adjoining to K the
elements α1, . . . , αn.

The following theorem will be of fundamental importance in this course:

Theorem 1.27. If L/K is a field extension and α ∈ L, then α is algebraic over K if and only if K(α)
is a finite field extension of K. In this case, we have [K(α) : K] = ∂(f), where f ∈ K[t] is the minimal
polynomial of α, and a basis of K(α) as a K-vector space is given by {1, α, . . . , α∂(f)−1}.

2. Algebraic number fields

2.1. Algebraic numbers. We now have all the necessary ingredients for studying field extensions. We
will be particularly interested in the algebraic extensions of Q:

Definition 2.1. We say that a complex number α is algebraic if it is algebraic over Q, i.e. if there
exists a non-zero polynomial f(t) ∈ Q[t] such that f(α) = 0. Let A denote the set of algebraic numbers.

Definition 2.2. An extension K of Q is algebraic if every element of K is algebraic, i.e. if K ⊂ A.

Theorem 2.3. The set A is a subfield of the complex numbers.

Proof. We use Theorem 1.27, which says that α is algebraic if and only if [Q(α) : Q] is finite. Suppose
that α and β are algebraic. Then

[Q(α, β) : Q] = [Q(α, β) : Q(α)][Q(α) : Q].

Since β is algebraic over Q, it is certainly algebraic over Q(α), so [Q(α, β) : Q(α)] is finite by Theorem
1.27. But each of −α, α + β, αβ, and (if β 6= 0) α/β belong to Q(α, β). So all of these are in A, which
proves the theorem. �

Definition 2.4. A number field is a subfield K of C such that [K : Q] <∞.

Theorem 2.5 (Primitive element theorem). Let L be a number field. Then there exists θ ∈ L such that
L = Q(θ); θ is called a primitive element for the extension L/Q.

Intuitive proof. By Galois theory, K has only finitely many subfields. Let θ be any element of K which
does not lie in any of the subfields. Then we must have K = Q(θ).

2.2. Field embeddings. We’ll now think a bit about maps between fields, because that will help us to
understand the structure of number fields. Lecture 3

Definition 2.6. Let K = Q(θ) be a number field. A (complex) embedding of K is a ring homomorphism
K → C.

Remark 2.7. Suppose that K = Q(θ), and let n = [K : Q]. By Theorem 1.27, 1, θ, . . . , θn−1 is a
Q-basis of K. If σ is any complex embedding of K, then σ is uniquely determined by σ(θ): if x =
a0 + a1θ + · · ·+ an−1θ

n−1, we have

σ(x) = a0 + a1σ(θ) + · · ·+ an−1σ(θ)n−1.

Recall the following theorem from Galois theory:
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Theorem 2.8. Let K = Q(θ) be a number field, with [K : Q] = n. Then there are exactly n distinct
embeddings σi : K ↪→ C. The elements σi(θ) are the distinct zeroes in C of the minimal polynomial of θ
over Q.

Definition 2.9. Let θ ∈ C be algebraic, and let K = Q(θ). Let σ1, . . . , σn be the embeddings of K into
C. Define the conjugates of x to be the elements {σi(θ) : i = 1, . . . , n}.

Note 2.10. Let θ be algebraic, and let θ1 = θ, θ2, . . . , θn be the conjugates of θ. As
∏n
i=1(t− θi) is the

minimal polynomial of θ over Q by Theorem2.8, it follows that both θ1 · · · θn and θ1 + · · ·+ θn are in Q.
We will see in the next section that this observation can be generalized: if g(X1, . . . , Xn) ∈ Q[X1, . . . , Xn]
is any symmetric polynomial, then g(θ1, . . . , θn) ∈ Q. (Of course you can also prove this using Galois
theory, but the results on symmetric functions are stronger, as they respect integral structures.)

2.3. Interlude: symmetric polynomials.

Definition 2.11. Let K be a field and let f ∈ K[X1, . . . , Xn]. Then f is called a symmetric polynomial
(in n variables) if for all permutations σ ∈ Sn we have

f(Xσ(1), . . . , Xσ(n)) = f(X1, . . . , Xn).

Example 2.12. The polynomials X1 +X2, X1X2, X2
1 + 3X1X2 +X2

2 are symmetric in two variables.
The polynomial

f(X1, X2, X3) = X3
1X2 +X3

1X3 +X3
2X1 +X3

2X3 +X3
3X1 +X3

3X2 −X2
1X

2
2X

2
3

in Q[X1, X2, X3] is symmetric in three variables. However, the polynomial

g(X1, X2, X3) = X2
1X2 +X2

2X3 +X2
3X1

is not symmetric, as it is not invariant under the transposition (2, 3).

Note 2.13. The symmetric polynomials in n variables form a subring Sn of K[X1, . . . , Xn].

Definition 2.14. The elementary symmetric polynomials in n variables are defined as

s1 = X1 + . . .+Xn,

s2 =
∑

1≤i<j≤n

XiXj ,

s3 =
∑

1≤i<j<k≤n

XiXjXk,

. . .

sn = X1X2 · · ·Xn.

Example 2.15. The elementary symmetric polynomials in 3 variables are

s1 = X1 +X2 +X3,

s2 = X1X2 +X2X3 +X3X1,

s3 = X1X2X3.

The following remark will be important later.

Remark 2.16. The elementary symmetric polynomials arise as follows: if f(X) ∈ C[X] is of the form

f(X) =

n∏
i=1

(X − αi),

then by expanding this we obtain

f(X) = Xn − s1(α1, . . . , αn)Xn−1 + . . .+ (−1)nsn(α1, . . . , αn).

The following theorem shows that the elementary symmetric functions are the building blocks for all
symmetric functions:

Theorem 2.17. (Newton’s theorem) Let K be a field. Then the subring Sn of K[X1, . . . , Xn] is generated
as a ring over K by the elementary symmetric polynomials in n variables, i.e. every element h ∈ Sn

can be written as a K-linear combination of elements of the form sa11 · · · sann , where ai ∈ Z≥0 for all i.
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Proof. The idea is to order the monomials lexicographically:

Xa1
1 · · ·Xan

n > Xb1
1 · · ·Xbn

n

if and only if a1 > b1 or a1 = b1 and a2 > b2 or a1 = b1, a2 = b2 and a3 > b3 etc. We can therefore define
the leading term of a polynomial in n variables. In particular, if f is symmetric, then its leading term is
of the form αXa1

1 Xa2
2 · · ·Xan

n for some a1 ≥ a2 ≥ · · · ≥ an and α ∈ K. Then the symmetric polynomial

αsa1−a21 sa2−a32 · · · sann
has the same leading term as f , so f − αsa1−a21 sa2−a32 · · · sann has a smaller leading term. We can now
proceed by induction. �

Example 2.18. Consider f(X1, X2, X3) = X2
1X

2
2 +X2

2X
2
3 +X2

3X
2
1 . The leading term of f is X2

1X
2
2 , so

a1 = a2 = 2 and a3 = 0. Hence we subtract s01s
2
2s

0
3 = s22:

f(X1, X2, X3)− s22 = X2
1X

2
2 +X2

2X
2
3 +X2

3X
2
1 − (X1X2 +X2X3 +X3X1)2

= −2(X2
1X2X3 +X1X

2
2X3 +X1X2X

2
3 ).

The leading term is −2X2
1X2X3, so a1 = 2, a2 = a3 = 1 and we subtract −2s1s3:

f(X1, X2, X3)− s22 + 2s1s3 = 0,

so f = s22 + 2s1s3.

Example 2.19. Let f(X,X2, X3) = X3
1 +X3

2 +X3
3 . The leading term of f in the lexicographic ordering

is X3
1 , so we subtract s31:

f(X1, X2, X3)− s31 = −3(X2
1X2 +X2

2X3 +X2
3X1 +X1X

2
2 +X2X

2
3 +X3X

2
1 )− 6X1X2X3.

The leading term of this expression is −3X2
1X2, so we subtract −3s1s2:

f(X1, X2, X3)− s31 − (−3s1s2) = 3X1X2X3 = 3s3.

We deduce that

(4) X3
1 +X3

2 +X3
3 = s31 − 3s1s2 + 3s3.

We can apply this identity to study properties of the zeroes of polynomials of degree 3. Suppose for
example that α, β, γ are the zeros of the polynomial t3 + 3t2 + 6t+ 15, i.e.

t3 + 3t2 + 6t+ 15 = (t− α)(t− β)(t− γ).

We then see from Remark 2.16 that

−s1(α, β, γ) = 3

s2(α, β, γ) = 6,

−s3(α, β, γ) = 15.

Then it follows from (4) that

α3 + β3 + γ3 = (−3)3 − 3(−3× 6) + 3× (−15) = −27 + 54− 45 = −18.

Remark 2.20. The same proof shows that the subring of symmetric polynomials of Z[X1, . . . , Xn] is
generated over Z by the elementary polynomials.

Combining Remark 2.16 and Theorem 2.17, we obtain the following corollary:

Corollary 2.21. Let L be a field extension of K, and let f ∈ K[t] be a monic polynomial of degree
n such that all the roots of f are contained in L. Denote the roots by α1, . . . , αn. If h(X1, . . . , Xn) ∈
K[X1, . . . , Xn] is symmetric, then h(α1, . . . , αn) ∈ K.

Proof. By assumption, f(t) factorises in L[t] as

f(t) = (t− α1) · · · (t− αn),

so since f ∈ K[t], we deduce from (2.16) that si(α1, . . . , αn) ∈ K for all i. By Theorem 2.17, it follows
that h(α1, . . . , αn) ∈ K for all symmetric polynomials h(X1, . . . , Xn) ∈ K[X1, . . . , Xn]. �

Lecture 4
Remark 2.22. The same proof works if we replace the field K by the ring Z: Let L be a field extension
of Q, and let f ∈ Z[t] be a monic polynomial of degree n such that all the roots of f are contained in L.
Denote the roots by α1, . . . , αn. If h(X1, . . . , Xn) ∈ Z[X1, . . . , Xn] is symmetric, then h(α1, . . . , αn) ∈ Z.
This result is not immediate from Galois theory.
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We can now give a new and explicit proof of Theorem 2.3 which states that A is a field:

Proof. We have to show that if α, β ∈ A, then α+ β,−α, αβ, 1
α ∈ A. We first show that α+ β ∈ A. We

do this by constructing explicitly a monic polynomial h(t) ∈ Q[t] such that h(α+β) = 0. For ? ∈ {α, β},
let f?(t) ∈ Q[t] be the minimal polynomial of ? over Q; let m = ∂(fα) and n = ∂(fβ). Let β1 = β, . . . , βn
be the conjugates of β. We will show that the polynomial

h(t) = fα(t− β1) · · · fα(t− βn)

has coefficients in Q. As it clearly satisfies h(α+ β) = 0, this will finish the proof.
Consider the product

(5) fα(t− x1)fα(t− x2) · · · fα(t− xn) = tmn + umn−1(x1, . . . , xn)tmn−1 + · · ·+ u0(x1, . . . , xn).

Note that we obtain h(t) by substituting β1, . . . , βn for x1, . . . , xn in (5), so we need to show that
ui(β1, . . . , βn) ∈ Q for all 1 ≤ i ≤ mn. Now as fα ∈ Q[t], it is clear that ui(x1, . . . , xn) ∈ Q[x1, . . . , xn]
for all i. Moreover, it is clear from the construction that the ui are symmetric polynomials. By Corollary
2.21 we therefore deduce that

ui(β1, . . . , βn) ∈ Q ∀1 ≤ i ≤ mn,

as required. Hence α+ β ∈ A. The proofs that −α, αβ, 1
α ∈ A are similar and left as exercises. �

Remark 2.23. Using Remark 2.22, we see that the proof shows indeed something stronger: it proves
that if both fα and fβ have coefficients in Z, then there exists a monic polynomial h(t) ∈ Z such that
h(α+ β) = 0 (and similarly for αβ and −α). This will be very important later!

2.4. Norms, traces and discriminants. Let K = Q(θ) be a number field of degree n, and let
σ1, . . . , σn be the complex embeddings of K. Let α ∈ K.

Definition 2.24. Define the norm and trace of α by

NK/Q(α) =

n∏
i=1

σi(α) and TrK/Q(α) =

n∑
i=1

σi(α).

Note 2.25. It is clear from the definitions that

• the norm is multiplicative: N(xy) = N(x)N(y), and
• the trace is additive: Tr(x+ y) = Tr(x) + Tr(y).

We can use the theory of symmetric functions to show the following result:

Proposition 2.26. Both NK/Q(α) and TrK/Q(α) are in Q.

Proof. Let θi = σi(θ), so θ1, θ2, . . . , θn are the conjugates of θ. As K = Q(θ), there exists g(t) ∈ Q[t]
such that α = g(θ). Then

NK/Q(α) =

n∏
i=1

σi(g(θ)) =

n∏
i=1

g(σi(θ)) =

n∏
i=1

g(θi),

which is clearly a symmetric polynomial in the θi and hence lies in Q by Corollary 2.21. The proof that
TrK/Q(α) ∈ Q is similar. �

Example 2.27. Consider the quadratic field K = Q(
√
d). If α = a+ b

√
d ∈ K, then

NK/Q(α) = (a+ b
√
d)(a− b

√
d) = a2 − db2,

TrK/Q(α) = (a+ b
√
d) + (a− b

√
d) = 2a.

Example 2.28. Let K = Q(ζ), where ζ = e
2πi
5 . Then the minimal polynomial of ζ over Q is f(t) =

t4 + t3 + t2 + t + 1 (why?), and the elements {1, ζ, ζ2, ζ3} are a Q-basis of K. Let α = 1 − ζ. Then
N(α) = 5 and Tr(α) = 5.

We now introduce one of the most important objects in the course, the discriminant. We will see later
that the discriminant can tell us whether or not a given set of elements of a number field is a Q-basis
(c.f. Corollary 2.38).

7



Definition 2.29. Let K be a number field, and let α1, . . . , αn be elements of K. Define a matrix
A = (aij)1≤i,j≤n by

aij = TrK/Q(αiαj).

Define the discriminant of the set α1, . . . , αn to be ∆[α1, . . . , αn] = det(A).

Example 2.30. Let K = Q(
√
d), and define

τd =

{√
d if d 6≡ 1 (mod 4)

1+
√
d

2 if d ≡ 1 (mod 4)

Note that {1, τd} is a Q-basis of K. (In fact, it is a very special basis, as we will see in the next section.)
Let us calculate the discriminant of this basis.

(1) Suppose that d 6≡ 1 (mod 4). Then we have TrK/Q(
√
d) =

√
d−
√
d = 0, so

A =

(
TrK/Q(1) TrK/Q(

√
d)

TrK/Q(
√
d) TrK/Q(d)

)
=

(
2 0
0 2d

)
,

so ∆[1,
√
d] = 4d.

(2) If d ≡ 1 (mod 4), then τd = 1+
√
d

2 . We have Tr(τd) = 1 and

TrK/Q(τ2d ) = TrK/Q

(
1 + d+

√
d

4

)
=

1 + d

2
,

so

A =

(
2 1
1 1+d

2

)
,

and ∆[1, τd] = det(A) = d.

One can give an alternative characterisation of the discriminant as follows:

Proposition 2.31. Let K be a number field, and let σ1, . . . , σn be the embeddings of K into C, and
define the matrix C = (cij)1≤i,j≤n by cij = σi(αj). Then

∆[α1, . . . , αn] = (det(C))2.

Proof. Problem sheet 1. �

Corollary 2.32. If α1, . . . , αn is a Q-basis of K and β1, . . . , βn ∈ K. Define the matrix D = (dij) with
dij ∈ Q by

βj =

n∑
i=1

dijαi.

Then

∆[β1, . . . , βn] = det(D)2∆[α1, . . . , αn].

Proof. Problem sheet 1. �

Note 2.33. If β1, . . . , βn is also a Q-basis of K, then D is just the change-of-basis matrix.

Example 2.34. Consider Q(
√
−3). We already know from above that ∆[1,

√
−3] = −12. What is

∆

[
1−
√
−3,

1

2

√
−3

]
?

We have (
1−
√
−3

2
√
−3

)
=

(
1 −1
0 1

2

)(
1√
−3

)
,

so Corollary 2.32 implies that

∆

[
1−
√
−3,

1

2

√
−3

]
=

(
1

2

)2

×∆[1,
√
−3] = −3.

Lecture 5
Proposition 2.35. Suppose that K = Q(θ) is a number field of degree n, and let θ = θ1, θ2, . . . , θn be
the conjugates of θ. Then

∆[1, θ, . . . , θn−1] =
∏
i>j

(θi − θj)2.
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Corollary 2.36. We have ∆[1, θ, . . . , θn−1] 6= 0.

Proof. Immediate from Proposition 2.35 and the fact that θi 6= θj if i 6= j (why?). �

This proposition will follow immediately from Proposition 2.31 and the following result:

Proposition 2.37. Let X1, . . . , Xn be indeterminates. Then

det


1 X1 . . . Xn−1

1

1 X2 . . . Xn−1
2

. . . . . . . . . . . .
1 Xn . . . Xn−1

n

 =
∏
i>j

(Xi −Xj).

The matrix on the left is called the Vandermonde matrix.

Proof. We proceed by induction on n. The case for n = 2 is clear by explicit computation. Suppose that
it is true for n− 1. Now consider the matrix

A =


1 X1 . . . Xn−2

1 Xn−1
1

1 X2 . . . Xn−2
2 Xn−1

2

. . . . . . . . . . . .
1 Xn . . . Xn−2

n Xn−1
n

 .

Recall that the determinant is invariant under row and column operations. Substract X1-times the
(n− 1)st column from the nth column to get

1 X1 . . . Xn−2
1 0

1 X2 . . . Xn−2
2 (X2 −X1)Xn−2

2

. . . . . . . . . . . .
1 Xn . . . Xn−2

n (Xn −X1)Xn−2
n

 .

Now subtract X1-times the (n− 2)nd column from the (n− 1)st column to get
1 X1 . . . 0 0
1 X2 . . . (X2 −X1)Xn−3

2 (X2 −X1)Xn−2
2

. . . . . . . . . . . .
1 Xn . . . (Xn −X1)Xn−3

n (Xn −X1)Xn−2
n

 .

Keep going, so in the end we get
1 0 . . . 0 0
1 X2 −X1 . . . (X2 −X1)Xn−3

2 (X2 −X1)Xn−2
2

. . . . . . . . . . . .
1 Xn −X1 . . . (Xn −X1)Xn−3

n (Xn −X1)Xn−2
n

 .

It is now easy to calculate the determinant:

det(A) = det


1 0 . . . 0 0
1 X2 −X1 . . . (X2 −X1)Xn−3

2 (X2 −X1)Xn−2
2

. . . . . . . . . . . .
1 Xn −X1 . . . (Xn −X1)Xn−3

n (Xn −X1)Xn−2
n


= det

X2 −X1 . . . (X2 −X1)Xn−3
2 (X2 −X1)Xn−2

2

. . . . . . . . . . . .
Xn −X1 . . . (Xn −X1)Xn−3

n (Xn −X1)Xn−2
n


= (X2 −X1) · · · (Xn −X1) det

 1 . . . Xn−3
2 Xn−2

2

. . . . . . . . . . . .
1 . . . Xn−3

n Xn−2
n

 ,

and we conclude by induction hypothesis. �

Corollary 2.38. Let K be a number field of degree n, and let α1, . . . , αn ∈ K. Then α1, . . . , αn is a
Q-basis of K if and only if ∆[α1, . . . , αn] 6= 0.

Proof. By Theorem 2.5, we can choose θ ∈ K such that K = Q(θ). Then 1, θ, . . . , θn−1 is a Q-basis of
K by Theorem 1.27, and

∆[1, θ, . . . , θn−1] 6= 0
9



by Corollary 2.36. Let D = (dij) be the matrix defined by

αj =

n∑
i=1

dijθ
i.

Then

∆[α1, . . . , αn] = det(D)2∆[1, θ, . . . , θn−1]

by Lemma 2.32. As det(D) 6= 0 if and only if α1, . . . , αn is also a Q-basis of K, this implies the result. �

In other words, the discriminant can be used to detect whether a given set of elements of a number
field is a Q-basis. However, it is not easy from the definitions to calculate the discriminant. The following
result shows that in special circumstance we can use the norm to calculate the discriminant:

Proposition 2.39. Let K = Q(θ), where θ has minimum polynomial f(t) over Q of degree n. Then the
Q-basis 1, θ, . . . , θn−1 has discriminant

∆[1, θ, . . . , θn−1] = (−1)
1
2n(n−1)NK/Q(Df(θ)),

where Df(t) ∈ Q[t] is the formal derivative of f(t).

Proof. Let σ1 = id, σ2, . . . , σn be theembeddings of K, and let θi = σi(θ), so in particular θ1 = θ. Over
C, the polynomial f(t) factorises as

f(t) = (t− θ1) · · · (t− θn).

If we define

gi(t) =
∏
j 6=i

(t− θj),

then f(t) = (t− θi)gi(t) for all 1 ≤ i ≤ n, and

σi(g1(t)) =
f(t)

σi(t− θ1)
=

f(t)

t− θi
= gi(t).

Then

Df(t) = g1(t) + (t− θ)Dg1(t),

⇒ Df(θ) = g1(θ) =

n∏
i=2

(θ − θi).

Taking the norm, we see that

NK/Q(Df(θ)) = NK/Q(g1(θ))

=

n∏
j=1

σj(g1(θ))

=

n∏
j=1

gj(θj)

=
∏
i 6=j

(θj − θi)

=
∏
i<j

(θj − θi)(θi − θj)

= (−1)
n(n−1)

2

∏
i<j

(θi − θj)2

= (−1)
n(n−1)

2 ∆[1, θ, . . . , θn−1],

where the last equality follows from Proposition 2.35. �

To give an example of how to use Proposition 2.39, let us look at cubic fields:

Definition 2.40. A number field K is cubic if [K : Q] = 3.

Lemma 2.41. Let K be a cubic field. Then there exists θ ∈ K such that K = Q(θ) and the minimal
polynomial of θ over Q is of the form g(t) = t3 + at+ b for some a, b ∈ Q.

10



Proof. Let α be a primitive element of K. Then the minimal polynomial of α over Q is of the form

f(t) = t3 + ct2 + dt+ e

for some c, d, e ∈ Q. Let θ = α+ c
3 . Then clearly K = Q(θ), and the minimal polynomial of θ over Q is

f(t− c
3 ), which is of the required form. �

Corollary 2.42. Let K be a cubic field, and let α be a primitive element of K whose minimal polynomial
over Q is of the form f(t) = t3 + at+ b. Then

∆[1, α, α2] = −27b2 − 4a3.
Lecture 6

Proof. Let β, γ be the other two roots of f(t), so over C, f(t) factorises as

f(t) = t3 + at+ b = (t− α)(t− β)(t− γ),

which implies that

(6) s1(α, β, γ) = 0, s1(α, β, γ) = a, s2(α, β, γ) = −b.
Now we know from Proposition 2.39 that

∆[1, α, α2] = −NK/Q(Df(α)).

We calculate NK/Q(Df(α)) using the theory of symmetric polynomials: clearly Df(α) = 3t2 + a, so

NK/Q(Df(α)) = σ1(3α2 + a) · σ2(3α2 + a) · σ3(3α2 + a)

= (3α2 + a)(3β2 + a)(3γ2 + 3)

= 27(αβγ)2 + 9a(α2β2 + β2γ2 + γ2α2) + 3a2(α2 + β2 + γ2) + a3

To evaluate the coefficients, we express them in terms of the si(α, β, γ). Applying the algorithm from
Newton’s theorem shows that

(αβγ)2 = s1(α, β, γ)2 = b2,

α2β2 + β2γ2 + γ2α2 = s1(α, β, γ)2 − 2s3(α, β, γ)s1(α, β, γ) = a2

α2 + β2 + γ2 = s1(α, β, γ)2 − 2s2(α, β, γ) = −2a,

so
NK/Q(Df(α)) = 27b2 + 4a3.

�

3. Algebraic integers

3.1. Definition and basic properties.

Definition 3.1. An algebraic integer is a root in C of a monic polynomial equation with integer co-
efficients. In other words, β is an algebraic integer if and only if there exist b0, . . . , bn−1 ∈ Z such
that

βn + bn−1β
n−1 + · · ·+ b0 = 0.

Example 3.2. The algebraic number θ =
√
−2 is an algebraic integer, since θ2+2 = 0. More surprisingly,

τ = 1+
√
5

2 (the “Golden Ratio”) is an algebraic integer, since it satisfies τ2 − τ − 1 = 0. We will later
determine all the algebraic integers in quadratic fields.

Clearly every algebraic integer is an algebraic number. The following proposition shows that there
are algebraic integers which are not algebraic numbers.

Lemma 3.3. If α is an algebraic integer and α ∈ Q, then α ∈ Z.

Proof. Write α = a/b in lowest terms. Suppose α is not an integer, so b 6= ±1. As α is an algebraic
integer, there are c0, . . . , cn−1 ∈ Z with

αn + cn−1α
n−1 + · · ·+ c0 = 0.

Clearing denominators,
an + cn−1a

n−1b+ · · ·+ c0b
n = 0.

As b 6= ±1, b must have a prime factor, p say. Since a/b is in lowest terms, p doesn’t divide a. But then
we have

an = −(cn−1a
n−1b+ · · ·+ c0b

n)

and the right-hand side is divisible by p but the left-hand side is not, a contradiction. �
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The following fundamental result follows from our work on symmetric functions:

Theorem 3.4. The algebraic integers form a subring B of A.

Proof. Let α, β ∈ B. Then Remark 2.23 shows that α+ β, αβ and −α are in B, so B is a ring. �

We now give an alternative description of algebraic integers, resembling Theorem 1.27. First recall
the following definition:

Definition 3.5. Let (G,+) be an abelian group. Then we say G is finitely generated if there is a finite
subset x1, . . . , xd of G such that every element y ∈ G can be written in the form

y = n1x1 + · · ·+ ndxd

for some ni ∈ Z. We call x1, . . . , xn generators of the group G.

Examples 3.6. (1) The additive group Z/NZ for any N ≥ 1 is finitely generated.
(2) The additive group

{
a
2i : i ≥ 0

}
is not finitely generated.

Lemma 3.7. A subgroup of a finitely generated abelian group is finitely generated.

Proof. We won’t prove this here, but it’s not very hard to do (it suffices to check that any subgroup of
Zn is finitely generated, and this can be shown pretty easily by induction on n). �

Proposition 3.8. A complex number α is an algebraic integer if and only if the additive group generated
by the powers 1, α, α2, . . . is finitely generated.

Remark 3.9. Explicitly, this means that α is an algebraic integer if and only if there exists N ≥ 1 such
that for all m > N , there exist c0, . . . , cN ∈ Z such that

αm = c0 + c1α+ · · ·+ cNα
N .

Proof. If α is an algebraic integer, then there exists a monic polynomial f ∈ Z[x] such that f(α) = 0. By
polynomial division, any polynomial g ∈ Z[x] can be written in the form g = qf + r, with ∂(r) < ∂(f);
and, since f is monic, we have r ∈ Z[x]. In particular, we can do this for g(x) = xn for any integer n.
Then

αn = g(α) = q(α)f(α) + r(α) = r(α),

since by assumption f(α) = 0. Since r has degree ≤ n − 1 and integer coefficients, this shows that
αn = r(α) lies in the subgroup generated by 1, . . . , αn−1.

Conversely, suppose that the abelian group generated by the powers of α is finitely generated. Then
it has a finite generating set x1, . . . , xn. Each of these generators can only mention finitely many powers
of α, so there is some finite N such that the subgroup is generated by 1, α, . . . , αN . But then αN+1 must
be a linear combination, with integer coefficients, of 1, . . . , αN ; so α satisfies a monic polynomial with
integer coefficients of degree N + 1. �

We can now give a new proof of Theorem 3.4:

Proof. Let α, β be algebraic integers. We have to show that αβ and α+β are also algebraic integers. By
Proposition 2.11, all powers of α lie in a finitely generated additive subgroup Γα of C (with generators
v1, . . . , vn) and all powers of β lie in a finitely generated additive subgroup Γβ of C (with generators
w1, . . . , wm).

Let Γ be the finitely generated additive group generated by {vi}1≤i≤n, {wj}1≤j≤m and by the products
viwj with 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then all powers of α+β and αβ lie in Γ, so it follows from Proposition
3.8 that they are all algebraic integers. �

We now want to give a criterion for an algebraic number to be an algebraic integer in terms of the Lecture 7
minimal polynomial. We first rcall the following result:

Lemma 3.10 (Gauss’ lemma). Let f(t) ∈ Z[t] and suppose f = gh for some g, h ∈ Q[t]. Then there
exists λ ∈ Q, λ 6= 0, such that both λg(t) and λ−1h(t) have coefficients in Z. In particular, f is irreducible
in Q[t] if and only if it is irreducible in Z[t].

Proposition 3.11. An algebraic number is an algebraic integer if and only if its minimal polynomial
over Q has integer coefficients.

12



Proof. If the minimal polynomial f of α has integral coefficients, then α is certainly an algebraic integer,
since f is monic.

Conversely, suppose α is an algebraic integer. Then it satisfies some monic integral polynomial F with
integer coefficients. So F is divisible by f , by the definition of the minimal polynomial; hence we can
write F = fg for some f, g ∈ Q[t]. By Gauss’s Lemma, we can find λ ∈ Q such that λf and λ−1g have
integer coefficients.

Since f is monic, the leading coefficient of λf is just λ. In particular, λ ∈ Z. But the leading coefficient
of f must divide the leading coefficient of F , which is 1. So λ = ±1. Since f has integer coefficients if
and only if −f does, the result follows. �

Definition 3.12. Let K be a number field. We define the ring of integers of K to be the ring OK = B∩K.

Example 3.13. Suppose that α = a+ bi ∈ Q(i) with b 6= 0. Then the minimal polynomial of α over Q
is

f(t) = t2 − 2at+ (a2 + b2),

so α is an algebraic integer if and only if both 2a and a2 + b2 are in Z. Hence the ring of integers of Q(i)
is Z(i) = {a+ bi : a, b ∈ Z}.

Let K be a number field. Given an element α ∈ K, we can also use the norm and trace operators to
test whether α ∈ OK :

Proposition 3.14. Let α ∈ K. If α is an algebraic integer, then Tr(α) and N(α) ∈ Z.

Proof. Example sheet. �

Example 3.15. Let K = Q( 3
√

2), and let α = 1
3

3
√

2 + 1
2

3
√

22. Is α an algebraic integer? An easy

calcuation shows that N(α) = 31
54 , so α is certainly not an algebraic integer.

Warning. Proposition 3.14 is not an if-and-only-if criterion!

3.2. Integral bases. Let K be a number field of degree n. Recall that a Q-basis of K is a basis for K
as a Q-vector space. We now want to define a ‘basis’ for the ring of integers of K. Recall that OK is an
Abelian group.

Definition 3.16. An integral basis of K is a Q-basis of K which is also a Z-basis for OK . In other words,
a Q-basis x1, ..., xn of K is an integral basis of K if for every α ∈ OK there exist unique a1, . . . , an ∈ Z
such that

α = a1x1 + · · ·+ anxn.

Example 3.17. 1 is an integral basis of Q; {1, i} is an integral basis of Q(i). But {1,
√

5} is not an

integral basis of Q(
√

5), since we know that 1+
√
5

2 is an algebraic integer.

It is not immediately clear that every number field has an integral basis.

3.2.1. Existence of integral bases. The aim of this section is to show that every number field has an
integral basis. We start with the following elementary observation:

Lemma 3.18. Let α be an algebraic number. Then there is a nonzero integer c such that cα is an
algebraic integer.

Proof. Exercise. �

As a corollary, we get the following result:

Corollary 3.19. Let K be a number field. Then there exists a Q-basis {α1, . . . , αn} of K such that
αi ∈ OK for all 1 ≤ i ≤ n.

The following observation will be useful:

Lemma 3.20. If {α1, . . . , αn} is a Q-basis of K such that αi ∈ OK for all 1 ≤ i ≤ n, then ∆[α1, . . . , αn] ∈
Z.

Proof. Since OK is a ring, it is clear that αiαj ∈ OK for all i, j. Then Proposition 3.14 implies that
Tr(αiαj) ∈ Z. As ∆[α1, . . . , αn] is by definition the determinant of the matrix with entries Tr(αiαj),
this finishes the proof. �

We can now prove the main result of this section:
13



Theorem 3.21. Every number field K has an integral basis. More precisely, if α1, . . . , αn ∈ OK is a
Q-basis of K such that |∆[α1, . . . , αn]| is minimal, then it is an integral basis.

Proof. By Corollary 3.19, there exists a Q-basis of K consisting of algebraic integers. Let w1, . . . , wn be
such a basis with ∆[w1, . . . , wn] minimal. We now argue by contradiction: suppose that w1, . . . , wn is
not an integral basis. Then there exists an algebraic integer β ∈ OK such that

β = a1w1 + · · ·+ anwn

for some ai ∈ Q, not all of which are in Z. Suppose without loss of generality that a1 6∈ Z. Then

a1 = a+ r,

where a ∈ Z and 0 < r < 1. Define Lecture 8

ψ1 = β − aw1, and ψi = wi for 2 ≤ i ≤ n.
Then ψ1, . . . , ψn is a Q-basis of K consisting of integers, and the determinant of the change of basis
matrix from {w1, . . . , wn} to {ψ1, . . . , ψn} is∣∣∣∣∣∣∣∣

a1 − a a2 a3 . . . an
0 1 0 . . . 0

. . .
0 0 0 . . . 1

∣∣∣∣∣∣∣∣ = r,

and hence Corollary 2.32 implies that

∆[ψ1, . . . , ψn] = r2∆[w1, . . . , wn],

and |∆[ψ1, . . . , ψn]| < |∆[w1, . . . , wn]| since 0 < r < 1. This gives a contradiction by the choice of
w1, . . . , wn. �

Corollary 3.22. Suppose that α1, . . . , αn ∈ OK are a Q-basis of K. If ∆[α1, . . . , αn] is square-free, then
{α1, . . . , αn} is an integral basis of K.

Proof. Let β1, . . . , βn be an integral basis. Then there exist cij ∈ Z for 1 ≤ i, j ≤ n such that αi =∑n
j=1 cijβj . Let C = (cij)1≤i,j≤n. By Corollary 2.32 this implies that

∆[α1, . . . , αn] = (det(C))2∆[β1, . . . , βn].

Since the left-hand side is square-free, we must have det(C) = ±1, so that the matrix C is uni- modular,
i.e. its inverse also has entries in Z. Hence α1, . . . , αn is also a Z-basis of OK , which finishes the proof. �

However, this corollary is NOT an if and only if criterion!

Example 3.23. Recall that if K = Q(i), then we know that {1, i} is an integral basis. However,
∆[1, i] = −4, which is certainly not square-free.

Example 3.24. Let f(t) = t3 − t− 1. We first note that f is irreducible in Z[t] (and hence in Q[t], by
Gauss’ lemma), as is reduction (mod 2) has no root and is hence irreducible. Let α be a root of f(t)
(it is clearly an algebraic integer), and let K = Q(α). Then 1, α, α2 is a Q-basis of K by Theorem 1.27,
and Corollary 2.42 shows that

∆[1, α, α2] = −23.

As 23 is prime, we deduce from Theorem 3.22 that {1, α, α2} is an integral basis of OK .

So given a general number field, how do we find an integral basis? The proof of Theorem 3.21 gives
an algorithm:

• Start with any Q-basis α1, . . . , αn of K consisting of algebraic integers.
• Calculate ∆[α1, . . . , αn], and let N be the largest integer whose square divides N .
• If N = 1, the basis α1, . . . , αn is integral by Corollary 3.22.
• If N > 1, then for each element of the form

θ =
1

N

n∑
i=1

aiαi, with 1 ≤ ai < N

determine whether θ is an algebraic integer. If it is, then replace one of the αi for which ai 6= 0
by θ to get a new basis with discriminant of smaller absolute value, and start again with step 2.

• If none of the θ are algebraic integers (or N = 1), you have found an integral basis.
14



Example 3.25. Let K = Q(
√

5). We start with the Q-basis 1,
√

5 of K. The two embeddings of K are

determined by
√

5 7→ ±
√

5, so we have

∆[1,
√

5] = det

(
1
√

5

1 −
√

5

)2

= 22 · 5.

Hence N = 2, and we need to check whether any of the elements 1
2 , 1+

√
5

2 ,
√
5
2 are algebraic integers. We

know from Lemma 3.3 that 1
2 is not an algebraic integer.

What about α = 1
2 (1 +

√
5)? Its minimal polynomial is t2 − t − 1, so α is an algebraic integer. We

calculate the discriminant of the new basis:

∆[1, α] = det

(
1 1+

√
5

2

1 1−
√
5

2

)2

= 5,

which is square-free, so 1, α is an integral basis of K.

Theorem 3.26. Let d ∈ Z \ {0, 1} be square-free and let K = Q(
√
d).

• If d 6≡ 1 mod 4 then {1,
√
d} is an integral basis of K.

• If d ≡ 1 mod 4 then
{

1, 1+
√
d

2

}
is an integral basis of K.

Proof. Course work 3. �

Example 3.27. Let α be a root of the polynomial f(t) = t3 + 11t+ 4. Note that f(t) is irreducible in
Q[t] as its reduction (mod 3) has no root. It follows from Theorem 1.27 that if we let K = Q(α), then
[K : Q] = 3, and 1, α, α2 is a Q-basis of K. Corollary 2.42 implies that

∆[1, α, α2] = −1439 · 22.
As 1439 is prime, we have N = 2, and we need to check whether any of the numbers 1

2 (a + bα + cα2),

a, b, c ∈ {0, 1} are algebraic integers. Let us start with 1
2 (α+α2). In order to see whether this element is

an algebraic integer, we determine its minimal polynomial, using the theory of symmetric polynomials.
Let α = α1, α2α3 be the roots of f(t). Then the polynomial

g(t) =

(
t− α1 + α2

1

2

)(
t− α2 + α2

2

2

)(
t− α3 + α2

3

2

)
has α+α2

2 as a root, and as it is symmetric in α1, α2, α3, it is coefficients in Q by Corollary 2.21. Explicitly,
if we write

g(t) = t3 + at2 + bt+ c,

then one can show (after a long and messy calculation) that a = 11, b = 36 and c = 4. Hence α+α2

2 is
an algebraic integer.

We now have a new basis of K consisting of algebraic integers, namely 1, α, α+α
2

2 . Is it an integral
basis? We have

∆

[
1, α,

α+ α2

2

]
=

∣∣∣∣∣∣
1 0 0
0 1 0
0 1

2
1
2

∣∣∣∣∣∣
2

×∆[1, α, α2]

=
1

4
∆[1, α, α2]

= −1439,

which is prime, so 1, α, α+α
2

2 is an integral basis by Corollary 3.22.

15


	Recommended books
	1. Introduction
	1.1. Euclidean and Unique factorisation domains
	1.2. Solving Diophantine equations
	1.3. Field extensions

	2. Algebraic number fields
	2.1. Algebraic numbers
	2.2. Field embeddings
	2.3. Interlude: symmetric polynomials
	2.4. Norms, traces and discriminants

	3. Algebraic integers
	3.1. Definition and basic properties
	3.2. Integral bases


