Number theory I: Problem sheet 1

1. Let K be the splitting field over \mathbf{Q} of the polynomial $X^{3}-2$. Find (with justification) a primitive element of the extension K / \mathbf{Q}.
2. Show that if $\mathbb{Q}(\sqrt{n})=\mathbb{Q}(\sqrt{m})$ for square-free integers n, m not equal to 0 or 1 , then $n=m$.
3. (a) Express the polynomial

$$
f(X, Y, Z)=X^{3} Y+Y^{3} Z+Z^{3} X+X Y^{3}+Y Z^{3}+Z X^{3}
$$

in terms of the elementary symmetric polynomials.
(b) Let α, β, γ be the roots of the polynomial $t^{3}-2 t+2$. Determine $f(\alpha, \beta, \gamma)$.
4. Show that if α is algebraic, then so is α^{-1}.
5. (a) Show that $f(t)=t^{2}+4 t+2$ us urreducible over \mathbb{Q}.
(b) Let α be a root of $f(t)$. Find a non-zero monic polynomial in $\mathbf{Q}[t]$ which has $\alpha+\sqrt{2}$ as a root.
6. (a) Let K be a number field, and let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of K. Let $\alpha_{1}, \ldots, \alpha_{n}$ be elements of K. Define the matrix $C=\left(c_{i j}\right)_{1 \leq i, j \leq n}$ by $c_{i j}=\sigma_{i}\left(\alpha_{j}\right)$. Show that

$$
\Delta\left[\alpha_{1}, \ldots, \alpha_{n}\right]=(\operatorname{det}(C))^{2}
$$

(b) Suppose that $\alpha_{1}, \ldots, \alpha_{n}$ is a \mathbb{Q}-basis of K and $\beta_{1}, \ldots, \beta_{n} \in K$. Define the matrix $D=\left(d_{i j}\right)$ with $d_{i j} \in \mathbb{Q}$ by

$$
\beta_{j}=\sum_{i=1}^{n} d_{i j} \alpha_{i}
$$

Show that

$$
\Delta\left[\beta_{1}, \ldots, \beta_{n}\right]=\operatorname{det}(D)^{2} \Delta\left[\alpha_{1}, \ldots, \alpha_{n}\right] .
$$

7. Let $\alpha=\sqrt[3]{2}$, and let $K=\mathbb{Q}(\alpha)$.
(a) Calculate the norm and trace of the elements $\alpha-1$ and $\alpha^{2}-1$.
(b) Calculate $\Delta\left[1, \alpha, \alpha^{2}\right]$.
(c) Let $\beta=\alpha^{2}-1$. Show that $1, \beta, \beta^{2}$ is a Q-basis of K, and calculate $\Delta\left[1, \beta, \beta^{2}\right]$.
8. Let α be a root of the polynomial $f(t)=t^{3}-t-1$, and let $K=\mathbb{Q}(\alpha)$. Calculate the norm and trace of the element $\alpha^{2}+1$.
