Number theory I: Problem sheet 1

- 1. Let *K* be the splitting field over **Q** of the polynomial $X^3 2$. Find (with justification) a primitive element of the extension K/\mathbf{Q} .
- 2. Show that if $\mathbb{Q}(\sqrt{n}) = \mathbb{Q}(\sqrt{m})$ for square-free integers *n*, *m* not equal to 0 or 1, then *n* = *m*.
- 3. (a) Express the polynomial

$$f(X, Y, Z) = X^{3}Y + Y^{3}Z + Z^{3}X + XY^{3} + YZ^{3} + ZX^{3}$$

in terms of the elementary symmetric polynomials.

- (b) Let α , β , γ be the roots of the polynomial $t^3 2t + 2$. Determine $f(\alpha, \beta, \gamma)$.
- 4. Show that if α is algebraic, then so is α^{-1} .
- 5. (a) Show that $f(t) = t^2 + 4t + 2$ us urreducible over Q.
 - (b) Let α be a root of f(t). Find a non-zero monic polynomial in $\mathbf{Q}[t]$ which has $\alpha + \sqrt{2}$ as a root.
- 6. (a) Let *K* be a number field, and let $\sigma_1, \ldots, \sigma_n$ be the embeddings of *K*. Let $\alpha_1, \ldots, \alpha_n$ be elements of *K*. Define the matrix $C = (c_{ij})_{1 \le i,j \le n}$ by $c_{ij} = \sigma_i(\alpha_j)$. Show that

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det(C))^2.$$

(b) Suppose that $\alpha_1, \ldots, \alpha_n$ is a Q-basis of *K* and $\beta_1, \ldots, \beta_n \in K$. Define the matrix $D = (d_{ij})$ with $d_{ij} \in \mathbb{Q}$ by

$$\beta_j = \sum_{i=1}^n d_{ij} \alpha_i$$

Show that

$$\Delta[\beta_1,\ldots,\beta_n] = \det(D)^2 \Delta[\alpha_1,\ldots,\alpha_n].$$

- 7. Let $\alpha = \sqrt[3]{2}$, and let $K = \mathbb{Q}(\alpha)$.
 - (a) Calculate the norm and trace of the elements $\alpha 1$ and $\alpha^2 1$.
 - (b) Calculate $\Delta[1, \alpha, \alpha^2]$.
 - (c) Let $\beta = \alpha^2 1$. Show that $1, \beta, \beta^2$ is a Q-basis of *K*, and calculate $\Delta[1, \beta, \beta^2]$.
- 8. Let α be a root of the polynomial $f(t) = t^3 t 1$, and let $K = \mathbb{Q}(\alpha)$. Calculate the norm and trace of the element $\alpha^2 + 1$.