Number theory I: Problem sheet 2

1. Let $d \in \mathbb{Z} \setminus \{0,1\}$ be square-free and let $K = \mathbb{Q}(\sqrt{d})$. Using the algorithm developed in lectures, show that 1, τ_d is an integral basis of *K*, where

$$\tau_d = \begin{cases} \sqrt{d} & \text{if } d \not\equiv 1 \pmod{4} \\ \frac{1+\sqrt{d}}{2} & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

- 2. Let α be a zero of the polynomial $f(t) = t^3 + 2t + 1$, and let $K = \mathbb{Q}(\alpha)$. Show that $O_K = \mathbb{Z}[\alpha]$.
- 3. Let *K* be a number field, and let $\theta_1, \ldots, \theta_n$ be an integral basis of *K*. Let $\alpha_1, \ldots, \alpha_n \in O_K$ be a Q-basis of *K*. Show that if

$$\Delta[\theta_1,\ldots,\theta_n] = \Delta[\alpha_1,\ldots,\alpha_n],\tag{1}$$

then $\alpha_1, \ldots, \alpha_n$ is also an integral basis of *K*. Is the converse true?

- 4. Let $K = \mathbb{Q}(\alpha)$, where $\alpha = \sqrt[3]{3}$. Find an integral basis of *K*.
- 5. Let *K* be a number field of degree *n*, and let x_1, \ldots, x_n be an integral basis.
 - (a) Let $\sigma_1, \ldots, \sigma_n$ be the complex embeddings of *K*, and define

$$P = \sum_{\pi \in A_n} \prod_{i=1}^n \sigma_i(x_{\pi(i)}),$$
$$N = \sum_{\pi \notin A_n} \prod_{i=1}^n \sigma_i(x_{\pi(i)}),$$

where A_n is the alternating group on *n* letters. Show that P + N and PN are in \mathbb{Z} .

(b) Show that $\Delta[x_1, \ldots, x_n] \equiv 0 \text{ or } 1 \pmod{4}$.