Number theory I: Problem sheet 3

1. Let $K=\mathbb{Q}(\sqrt{-d})$, where $d>1$. Show that

$$
O_{K}^{\times}= \begin{cases}\left\{ \pm 1, \pm \omega, \pm \omega^{2}: \omega=e^{\frac{2 \pi i}{3}}\right\} & \text { if } d=3 \\ \{ \pm 1\} & \text { for any other } d>0\end{cases}
$$

2. Show that for $K=\mathbb{Q}(\sqrt{2})$, the unit group O_{K}^{\times}is infinite.
3. Let $\zeta=e^{\frac{2 \pi i}{5}}$, and let $K=\mathbb{Q}(\zeta)$.
(a) Calculate $N(\zeta+2)$ and $N(\zeta-2)$.
(b) Show that $\zeta+2$ and $\zeta-2$ have no proper factors (i.e. no factors which aren't units) in $\mathbb{Z}[\zeta]$.
4. Let R be an integral domain. An element $x \in R-R^{\times}$is prime if it is nonzero and satisfies

$$
x|a b \quad \Rightarrow \quad x| a \text { or } x \mid b
$$

(a) Show that any prime is irreducible.
(b) By considering the factorisation of 6 in $\mathbb{Z}[\sqrt{-5}]$, or otherwise, show that the converse is false.
(c) Show that $\sqrt{-5}$ is prime in $\mathbb{Z}[\sqrt{-5}]$.
5. (a) Let $f: R \rightarrow S$ be a ring homomorphism, let I be an ideal in S. Show that $f^{-1}(I)$ is an ideal of R.
(b) Is it always true that for R, S rings and $\sigma: R \rightarrow S$ a ring homomorphism, the image of an ideal of R under σ is an ideal of S ? Give a proof or a counterexample as appropriate.
6. Compute the greatest common divisor in $\mathbb{Z}[i]$ of $4+7 i$ and $1+3 i$.

