Number theory I: Problem sheet 4

- 1. Let *K* be a field, and let $f(t) \in K[t]$ be non-zero. Show that f(t) is irreducible if and only if $K[t] / \langle f(t) \rangle$ is a field.
- 2. Prove that a subset b of a number field *K* is a fractional ideal if and only if the following conditions are satisfied: (a) if $x, y \in \mathfrak{b}$, then $x + y \in \mathfrak{b}$, (b) $\mathfrak{b}O_K \subset \mathfrak{b}$, and (c) there exists $x \in O_K$ such that $x\mathfrak{b} \subseteq O_K$.
- 3. Let $K = \mathbb{Q}(\sqrt{-3})$, and let $\mathfrak{a} = \left\langle 2, \frac{1-\sqrt{-3}}{2} \right\rangle$. Determine \mathfrak{a}^{-1} .
- 4. Let $K = \mathbb{Q}(\sqrt{-5})$, and consider the ideals $\mathfrak{p}_1 = \langle 2, 1 + \sqrt{-5} \rangle$ and $\mathfrak{p}_2 = \langle 3, 1 \sqrt{-5} \rangle$ in O_K .
 - (a) Show that \mathfrak{p}_1 and \mathfrak{p}_2 are maximal, and compute $|O_K/\mathfrak{p}_i|$ for i = 1, 2.
 - (b) Show that p_1 and p_2 can't be principal ideals.
 - (c) Show that $\mathfrak{p}_1\mathfrak{p}_2$ is principal, and find a generator.
- 5. Determine all fractional ideals in $\mathbb{Z}[i]$.
- 6. Let \mathfrak{a} be a non-zero ideal in O_K . Show that $\mathfrak{a}|\langle N(\mathfrak{a})\rangle$.