Number theory I: Problem sheet 5

1. Define the ideals

$$\mathfrak{p} = \langle 2, 1 + \sqrt{-5} \rangle$$
$$\mathfrak{q} = \langle 3, 1 + \sqrt{-5} \rangle$$

in $\mathbb{Z}[\sqrt{-5}]$.

- (a) Calculate p^2 and pq.
- (b) Are p and q maximal? Justify your answer.
- (c) Determine a \mathbb{Z} -basis for each of the ideals.
- 2. (a) Find all the ideals \mathfrak{a} in $\mathbb{Z}[\sqrt{-5}]$ such that $6 \in \mathfrak{a}$.
 - (b) Find all the ideals in $\mathbb{Z}[\sqrt{5}]$ of norm 18.
 - (c) Let $L = \mathbb{Q}(\sqrt{-3})$. Show that there is unique ideal in O_L of norm 12.
- 3. Consider the ideal $\mathfrak{a} = \langle 5 2\sqrt{-5} \rangle$ in $\mathbb{Z}[\sqrt{-5}]$. Factorise \mathfrak{a} into maximal ideals.
- 4. Determine all ideals in $O_K = \mathbb{Z}[\sqrt{6}]$ of norm 24.
- 5. Let α be a root of $t^3 + 2t + 2$, and let $K = \mathbb{Q}(\alpha)$.
 - (a) Show that $\{1, \alpha, \alpha^2\}$ is an integral basis of *K*.
 - (b) Factorise *p* into maximal ideals in O_K for p = 5, 7.
 - (c) Calculate $N(3 \alpha)$ and hence factorise $\langle 3 \alpha \rangle$ into maximal ideals.
 - (d) Show that 5α is irreducible in O_K .