Number theory I: Problem sheet 6

1. Let $p \ge 3$ be prime. Then

1.
$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}};$$

- 2. -1 is a quadratic residue (mod p) if and only if $p \equiv 1 \pmod{4}$.
- 2. Let *p* be an odd prime. Show that 3 is a quadratic residue (mod *p*) if and only if $p \equiv \pm 1 \pmod{12}$.
- 3. Evaluate the following Legendre symbols: $\left(\frac{107}{1009}\right)$, $\left(\frac{21}{101}\right)$, $\left(\frac{377}{233}\right)$, $\left(\frac{-104}{131}\right)$.
- 4. Show that if *p* is a prime of the form $p = 2^n 1$ for some n > 2, then $\left(\frac{3}{p}\right) = 1$.
- 5. Let $p \equiv 3 \pmod{4}$ be prime, and let *a* be coprime to *p*. Show that either *a* or -a is a quadratic residue (mod *p*), but not both.
- 6. Let *p* be an odd prime. Show that $\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) = 0$.