Number theory I: Problem sheet 7

- 1. (a) Let $p \equiv 1 \pmod{4}$ be an odd prime, and let u satisfy $u^2 \equiv -1 \pmod{p}$. Define the lattice Λ to consist of all pairs $(a, b) \in \mathbb{Z}^2$ such that $b \equiv ua \pmod{p}$. Show that Λ is a subgroup of \mathbb{Z}^2 of index p/
 - (b) Let $u, v \in \mathbb{Z}$ such that $u^2 + v^2 + 1 \equiv 0 \pmod{p}$. Let $\Lambda \subseteq \mathbb{Z}^4$ be the lattice of points (a, b, c, d) which satisfy

 $c \equiv ua + vb \pmod{p}$ and $d \equiv ub - va \pmod{p}$.

Then Λ has index p^2 in \mathbb{Z}^4

- 2. Let *K* be a number field with ring of integers O_K , and let I_1 , I_2 be comprime ideals such that $I_1I_2 = J^k$ for some ideal *J* and some k > 0. Then there exist ideals J_1 , J_2 such that $I_1 = J_2^k$ and $I_2 = J_2^k$.
- 3. Calculate the ideal class group of the following fields:
 - (a) $\mathbb{Q}(\sqrt{\pm 3})$,
 - (b) $\mathbb{Q}(\sqrt{-11})$,
 - (c) $\mathbb{Q}(\sqrt{-13})$,
 - (d) $\mathbb{Q}(\sqrt{-23})$,
 - (e) $\mathbb{Q}(\sqrt{-65})$.
- 4. (a) Determine all integer solutions of the equation $Y^3 = X^2 + 13$.
 - (b) Does the equation $Y^3 = X^2 + 30$ have any integer solutions? Justify your answer.