Number theory I: Problem sheet 8

1. Let $K=\mathbf{Q}(\sqrt[3]{2})$
(a) Compute an integral basis of K.
(b) Compute the ideal class group of K.
2. Let $p \geq 3$ be an odd prime, and let $\zeta=e^{2 \pi i / p}$ and $F=\mathbb{Q}(\zeta)$.
(a) Show that $\langle 1-\zeta\rangle$ is prime.
(b) Show that there exists $u \in O_{F}^{\times}$such that $p=u(1-\zeta)^{p-1}$.
(c) Show that the only roots of unity in O_{F} are of the form $\pm \zeta^{s}$ for some $s \in \mathbb{Z}$.
(d) Show that for r, s integers, both of them coprime to p, we have

$$
\frac{\zeta^{r}-1}{\zeta^{s}-1} \in O_{F}^{\times}
$$

3. Let K be a number field, and let $N \geq 1$. Then there are only finitely many $\alpha \in O_{K}$ such that all conjugates of α have complex absolute value $\leq N$.
