Number theory I: Problem sheet 8

- 1. Let $K = \mathbb{Q}(\sqrt[3]{2})$
 - (a) Compute an integral basis of *K*.
 - (b) Compute the ideal class group of *K*.
- 2. Let $p \ge 3$ be an odd prime, and let $\zeta = e^{2\pi i/p}$ and $F = \mathbb{Q}(\zeta)$.
 - (a) Show that $\langle 1 \zeta \rangle$ is prime.
 - (b) Show that there exists $u \in O_F^{\times}$ such that $p = u(1 \zeta)^{p-1}$.
 - (c) Show that the only roots of unity in O_F are of the form $\pm \zeta^s$ for some $s \in \mathbb{Z}$.
 - (d) Show that for r, s integers, both of them coprime to p, we have

$$\frac{\zeta^r - 1}{\zeta^s - 1} \in O_F^{\times}$$

3. Let *K* be a number field, and let $N \ge 1$. Then there are only finitely many $\alpha \in O_K$ such that all conjugates of α have complex absolute value $\le N$.