Number theory I: Problem sheet 9

1. Let α be an element in a number field K, and suppose that $|N(\alpha)|=1$. Does this imply that $\alpha \in O_{K}^{\times}$? Give a proof or counterexample as appropriate.
2. Let $K=Q(\sqrt{d})$ be a real quadratic field, and write the fundamental unit $u=a+b \sqrt{d}$. Show that $b>0$.
3. Calculate the fundamental unit of $\mathbb{Q}(\sqrt{d})$ for $d=3,5,7,11,13,15$. Hence determine all solutions of Pell's equation $x^{2}-d y^{2}= \pm 1$.
4. Write $u=80+9 \sqrt{79}$ for the fundamental unit in $\mathbb{Z}[\sqrt{79}]$. (You may assume without proof that u is the fundamental unit.)
(a) Show that if there exists an element $z \in \mathbb{Z}[\sqrt{79}]$ with norm -3 , then there is one which satisfies $1<z<u$.
(b) Show that if we write that element as $z=a+b \sqrt{79}$, then

$$
1+\frac{3}{u}<2 b \sqrt{79}<3+u
$$

