Number theory I: Problem sheet 9

- 1. Let α be an element in a number field K, and suppose that $|N(\alpha)| = 1$. Does this imply that $\alpha \in O_K^{\times}$? Give a proof or counterexample as appropriate.
- 2. Let $K = Q(\sqrt{d})$ be a real quadratic field, and write the fundamental unit $u = a + b\sqrt{d}$. Show that b > 0.
- 3. Calculate the fundamental unit of $\mathbb{Q}(\sqrt{d})$ for d = 3, 5, 7, 11, 13, 15. Hence determine all solutions of Pell's equation $x^2 dy^2 = \pm 1$.
- 4. Write $u = 80 + 9\sqrt{79}$ for the fundamental unit in $\mathbb{Z}[\sqrt{79}]$. (You may assume without proof that *u* is the fundamental unit.)
 - (a) Show that if there exists an element $z \in \mathbb{Z}[\sqrt{79}]$ with norm -3, then there is one which satisfies 1 < z < u.
 - (b) Show that if we write that element as $z = a + b\sqrt{79}$, then

$$1+\frac{3}{u}<2b\sqrt{79}<3+u.$$