Problem sheet 1 Solutions

Problem 1

The splitting field K over \mathbb{Q} of the polynomial $x^{3}-2$ is $\mathbb{Q}(\alpha, \omega)$, where $\alpha=2^{\frac{1}{3}}$ and $\omega=e^{\frac{2 \pi i}{3}} \in \mathbb{C}$. We will show that $\beta=\alpha+\omega$ is a primitive element of K / \mathbb{Q}. Since the degree of K / \mathbb{Q} is 6 , it suffices to check that $1, \beta, \beta^{2}, \beta^{3}$ are \mathbb{Q}-linearly independent. By a straightforward computation with a basis $\left\{1, \alpha, \alpha^{2}, \omega, \alpha \omega, \alpha^{2} \omega\right\}$ of K / \mathbb{Q}, we have

$$
\begin{aligned}
1 & =1, \\
\beta & =\alpha+\omega, \\
\beta^{2} & =-1+\alpha^{2}-\omega+2 \alpha \omega, \\
\beta^{3} & =3-3 \alpha-3 \alpha \omega+3 \alpha^{2} \omega,
\end{aligned}
$$

hence $1, \beta, \beta^{2}, \beta^{3}$ are \mathbb{Q}-linearly independent.

Problem 2

If $\mathbb{Q}(\sqrt{n})=\mathbb{Q}(\sqrt{m})$, then there exist $a, b \in \mathbb{Q}$ such that $\sqrt{n}=a+b \sqrt{m}$.
Case 1: $a \neq 0$ and $b \neq 0$. By squaring the equation, we get $\sqrt{m}=$ $\frac{n-a^{2}-m b^{2}}{2 a b}$. This is impossible since m is square-free.

Case 2: $b=0$. In this case we have $\sqrt{n}=a$ but this is also impossible.
Case 3: $a=0$ and $b \neq 0$. In this case we have $\sqrt{n}=b \sqrt{m}$. Let us write $b=\frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. Then $q^{2} n=p^{2} m$. Since m and n are square-free, we conclude that $p^{2}=q^{2}=1$ and $m=n$.

Problem 3

(a) We denote $s_{1}=X+Y+Z, s_{2}=X Y+Y Z+Z X$, and $s_{3}=X Y Z$. Then

$$
\begin{aligned}
f(X, Y, Z) & =(X Y+Y Z+Z X)\left(X^{2}+Y^{2}+Z^{2}\right)-X Y Z(X+Y+Z) \\
& =s_{2}\left(s_{1}^{2}-2 s_{2}\right)-s_{1} s_{3}=s_{1}^{2} s_{2}-2 s_{2}^{2}-s_{1} s_{3} .
\end{aligned}
$$

(b) By Vieta's formulas, we have $s_{1}=0, s_{2}=-2$, and $s_{3}=-2$. It follows that

$$
f(\alpha, \beta, \gamma)=s_{1}^{2} s_{2}-2 s_{2}^{2}-s_{1} s_{3}=-8
$$

Problem 4

We may assume $\alpha \neq 0$. If α is algebraic, then there exists $a_{0}, \cdots, a_{n-1} \in$ \mathbb{Q} such that $\alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{0}=0$. Let $0 \leq i \leq n-1$ be the smallest integer such that $a_{i} \neq 0$. Multiplying the equation by α^{-n}, we get $1+a_{n-1} \alpha^{-1}+\cdots+a_{i} \alpha^{-(n-i)}=0$, hence α^{-1} is algebraic.

Problem 5

(a) The polynomial $f(t)=t^{2}+4 t+2$ has $-2+\sqrt{2}$ and $-2-\sqrt{2}$ as roots over \mathbb{R} but the roots are not in \mathbb{Q}. Thus f is irreducible over \mathbb{Q}.
(b) As constructed in Remark 2.22 using symmetric polynomials, $f(t-$ $\sqrt{2}) f(t+\sqrt{2})$ is a nonzero monic polynomial and has $\alpha+\sqrt{2}$ as a root. Note that

$$
f(t-\sqrt{2}) f(t+\sqrt{2})=t^{4}+8 t^{3}+16 t^{2}-16 .
$$

Problem 6

(a) It follows from the following computation:

$$
\begin{aligned}
\Delta\left[\alpha_{1}, \cdots, \alpha_{n}\right] & =\operatorname{det}\left(\operatorname{Tr}\left(\alpha_{i} \alpha_{j}\right)\right)_{1 \leq i, j \leq n} \\
& =\operatorname{det}\left(\sum_{k=1}^{n} \sigma_{k}\left(\alpha_{i} \alpha_{j}\right)\right)_{1 \leq i, j \leq n} \\
& =\operatorname{det}\left(\sum_{k=1}^{n} \sigma_{k}\left(\alpha_{i}\right) \sigma_{k}\left(\alpha_{j}\right)\right)_{1 \leq i, j \leq n} \\
& =\operatorname{det}\left(\sigma_{k}\left(\alpha_{i}\right)\right)_{1 \leq i, k \leq n} \operatorname{det}\left(\sigma_{k}\left(\alpha_{j}\right)\right)_{1 \leq j, k \leq n} \\
& =\operatorname{det}\left(\sigma_{k}\left(\alpha_{i}\right)\right)_{1 \leq i, k \leq n}^{2}=(\operatorname{det}(C))^{2}
\end{aligned}
$$

(b) Using (a), we obtain

$$
\begin{aligned}
\Delta\left[\beta_{1}, \cdots, \beta_{n}\right] & =\operatorname{det}\left(\sigma_{k}\left(\beta_{j}\right)\right)_{1 \leq j, k \leq n}^{2} \\
& =\operatorname{det}\left(\sum_{i=1}^{n} d_{i j} \sigma_{k}\left(\alpha_{i}\right)\right)_{1 \leq j, k \leq n}^{2} \\
& =\operatorname{det}\left(d_{i j}\right)_{1 \leq i, j \leq n}^{2} \operatorname{det}\left(\sigma_{k}\left(\alpha_{i}\right)\right)_{1 \leq i, k \leq n}^{2} \\
& =\operatorname{det}(D)^{2} \Delta\left[\alpha_{1}, \cdots, \alpha_{n}\right] .
\end{aligned}
$$

Problem 7

(a) Let $\sigma_{1}, \sigma_{2}, \sigma_{3}$ be the complex embeddings of K and denote $\theta_{i}=\sigma_{i}(\alpha)$ for $i=1,2,3$. We also denote $s_{1}=\theta_{1}+\theta_{2}+\theta_{3}, s_{2}=\theta_{1} \theta_{2}+\theta_{2} \theta_{3}+\theta_{3} \theta_{1}$, and $s_{3}=\theta_{1} \theta_{2} \theta_{3}$. Note that the minimal polynomial of α is $t^{3}-2$. By Vieta's formulas we have $s_{1}=s_{2}=0$ and $s_{3}=2$. It follows that

$$
\begin{gathered}
N_{K / \mathbb{Q}}(\alpha-1)=\prod_{i=1}^{3} \sigma_{i}(\alpha-1)=\prod_{i=1}^{3}\left(\sigma_{i}(\alpha)-1\right)=\left(\theta_{1}-1\right)\left(\theta_{2}-1\right)\left(\theta_{3}-1\right) \\
=s_{3}-s_{2}+s_{1}-1=1 \\
\begin{aligned}
N_{K / \mathbb{Q}}\left(\alpha^{2}-1\right)= & \prod_{i=1}^{3} \sigma_{i}\left(\alpha^{2}-1\right)=\prod_{i=1}^{3}\left(\sigma_{i}(\alpha)^{2}-1\right)=\left(\theta_{1}^{2}-1\right)\left(\theta_{2}^{2}-1\right)\left(\theta_{3}^{2}-1\right) \\
= & \theta_{1}^{2} \theta_{2}^{2} \theta_{3}^{2}-\left(\theta_{1}^{2} \theta_{2}^{2}+\theta_{2}^{2} \theta_{3}^{2}+\theta_{3}^{2} \theta_{1}^{2}\right)+\left(\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}\right)-1 \\
= & s_{3}^{2}-\left(s_{2}^{2}-2 s_{1} s_{3}\right)+\left(s_{1}^{2}-2 s_{2}\right)-1=3
\end{aligned} \\
\quad \begin{aligned}
& \operatorname{Tr}_{K / \mathbb{Q}}(\alpha-1)=\sum_{i=1}^{3} \sigma_{i}(\alpha-1)=\sum_{i=1}^{3}\left(\sigma_{i}(\alpha)-1\right) \\
&=\theta_{2}+\theta_{3}-3=s_{1}-3=-3 \\
&=\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}-3=s_{1}^{2}-2 s_{2}-3=-3
\end{aligned} \\
\begin{aligned}
\operatorname{Tr}_{K / \mathbb{Q}}\left(\alpha^{2}-1\right)= & \sum_{i=1}^{3} \sigma_{i}\left(\alpha^{2}-1\right)=\sum_{i=1}^{3}\left(\sigma_{i}(\alpha)^{2}-1\right)
\end{aligned}
\end{gathered}
$$

(b) We calculate the following determinant of the matrix:

$$
\Delta\left[1, \alpha, \alpha^{2}\right]=\operatorname{det}\left(\begin{array}{ccc}
\operatorname{Tr}(1) & \operatorname{Tr}(\alpha) & \operatorname{Tr}\left(\alpha^{2}\right) \\
\operatorname{Tr}(\alpha) & \operatorname{Tr}\left(\alpha^{2}\right) & \operatorname{Tr}\left(\alpha^{3}\right) \\
\operatorname{Tr}\left(\alpha^{2}\right) & \operatorname{Tr}\left(\alpha^{3}\right) & \operatorname{Tr}\left(\alpha^{4}\right)
\end{array}\right) .
$$

The traces of the powers of α are

$$
\begin{gathered}
\operatorname{Tr}(1)=\sum_{i=1}^{3} \sigma_{i}(1)=3 \\
\operatorname{Tr}(\alpha)=\sum_{i=1}^{3} \sigma_{i}(\alpha)=s_{1}=0
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{Tr}\left(\alpha^{2}\right)=\sum_{i=1}^{3} \sigma_{i}(\alpha)^{2}=s_{1}^{2}-2 s_{2}=0 \\
\operatorname{Tr}\left(\alpha^{3}\right)=\operatorname{Tr}(2)=\sum_{i=1}^{3} \sigma_{i}(2)=6 \\
\operatorname{Tr}\left(\alpha^{4}\right)=\operatorname{Tr}(2 \alpha)=0
\end{gathered}
$$

It follows that

$$
\Delta\left[1, \alpha, \alpha^{2}\right]=\operatorname{det}\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 0 & 6 \\
0 & 6 & 0
\end{array}\right)=-108
$$

Alternatively, one may also apply Proposition 2.39 and compute

$$
\Delta\left[1, \alpha, \alpha^{2}\right]=(-1)^{\frac{3 \times 2}{2}} N_{K / \mathbb{Q}}\left(3 \alpha^{2}\right)=-27 N_{K / \mathbb{Q}}(\alpha)^{2}=-108 .
$$

(c) Note that

$$
\left(\begin{array}{c}
1 \\
\beta \\
\beta^{2}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1+\alpha^{2} \\
1-2 \alpha-2 \alpha^{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 0 & 1 \\
1 & -2 & -2
\end{array}\right)\left(\begin{array}{c}
1 \\
\alpha \\
\alpha^{2}
\end{array}\right) .
$$

Using (b) of Problem 6, we get

$$
\Delta\left[1, \beta, \beta^{2}\right]=\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 0 & 1 \\
1 & -2 & -2
\end{array}\right)^{2} \Delta\left[1, \alpha, \alpha^{2}\right]=-432 .
$$

Problem 8

(a) Let $\sigma_{1}, \sigma_{2}, \sigma_{3}$ be the complex embeddings of K and denote $\theta_{i}=\sigma_{i}(\alpha)$ for $i=1,2,3$. We also denote $s_{1}=\theta_{1}+\theta_{2}+\theta_{3}, s_{2}=\theta_{1} \theta_{2}+\theta_{2} \theta_{3}+\theta_{3} \theta_{1}$, and $s_{3}=\theta_{1} \theta_{2} \theta_{3}$. Then the norm and the trace are expressed by

$$
\begin{aligned}
N_{K / \mathbb{Q}}\left(\alpha^{2}+1\right) & =\prod_{i=1}^{3} \sigma_{i}\left(\alpha^{2}+1\right)=\prod_{i=1}^{3}\left(\sigma_{i}(\alpha)^{2}+1\right) \\
& =\left(\theta_{1}^{2}+1\right)\left(\theta_{2}^{2}+1\right)\left(\theta_{3}^{2}+1\right) \\
& =1+\left(\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}\right)+\left(\theta_{1}^{2} \theta_{2}^{2}+\theta_{2}^{2} \theta_{3}^{2}+\theta_{3}^{2} \theta_{1}^{2}\right)+\theta_{1}^{2} \theta_{2}^{2} \theta_{3}^{2} \\
& =1+\left(s_{1}^{2}-2 s_{2}\right)+\left(s_{2}^{2}-2 s_{1} s_{3}\right)+s_{3}^{2},
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Tr}_{K / \mathbb{Q}}\left(\alpha^{2}+1\right) & =\sum_{i=1}^{3} \sigma_{i}\left(\alpha^{2}+1\right)=\sum_{i=1}^{3}\left(\sigma_{i}(\alpha)^{2}+1\right) \\
& =\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+3 \\
& =s_{1}^{2}-2 s_{2}+3 .
\end{aligned}
$$

On the other hand, we have $s_{1}=0, s_{2}=-1$, and $s_{3}=1$ from Vieta's formulas. Thus $N_{K / \mathbb{Q}}\left(\alpha^{2}+1\right)=5$ and $\operatorname{Tr}_{K / \mathbb{Q}}\left(\alpha^{2}+1\right)=5$.

