Problem sheet 10 Solutions

Problem 1

There exist x, y in the positive integers satisfying $x^{2}-15 y^{2}=n$ if any only if there exists an element $x+y \sqrt{15}$ of norm n. In Problem 3 of the previous problem sheet we saw that $4+\sqrt{15}$ is the fundamental unit of norm 1 , and hence there is no unit of norm -1 .
(1) $n= \pm 4$.

We deduce from Dedekind's criterion that $\langle 2\rangle=\mathfrak{p}_{2}^{2}$, where $\mathfrak{p}_{2}=\langle 2,1+\sqrt{15}\rangle$. It follows that $\langle 2\rangle$ is the unique ideal of norm 4 , hence the solutions for $n=4$ are just the twice of the solutions for $n=1$, i.e. $2(4+\sqrt{15})^{m}$ for $m \in \mathbb{Z}$. Since there is no unit of norm -1 , there is no element of norm -4 , hence the equation for $n=-4$ is not solvable.
(2) $n= \pm 7$.

We deduce from Dedekind's criterion that $\langle 7\rangle=\mathfrak{p}_{7} \mathfrak{p}_{7}^{\prime}$, where $\mathfrak{p}_{7}=\langle 7,1+\sqrt{15}\rangle$ and $\mathfrak{p}_{7}^{\prime}=\langle 7,1-\sqrt{15}\rangle$.

One can check that the ideals $\langle 7,1+\sqrt{15}\rangle$ and $\langle 7,1-\sqrt{15\rangle}$ are not principal. Indeed, as the norm of $\langle 1+\sqrt{15}\rangle$ and $\langle 1-\sqrt{15}\rangle$ are 14 , their factorization must be either $\mathfrak{p}_{2} \mathfrak{p}_{7}$ or $\mathfrak{p}_{2} \mathfrak{p}_{7}^{\prime}$. In any case, \mathfrak{p}_{7} and $\mathfrak{p}_{7}^{\prime}$ are not principal sincep ${ }_{2}$ is not principal.

It follows that there is no element of norm ± 7, hence the equations for $n= \pm 7$ are not solvable.
(3) $n= \pm 11$.

We deduce from Dedekind's criterion that $\langle 11\rangle=\mathfrak{p}_{11} \mathfrak{p}_{11}^{\prime}$, where $\mathfrak{p}_{11}=\langle 11,2+$ $\sqrt{15}\rangle=\langle 2+\sqrt{15}\rangle, \mathfrak{p}_{11}^{\prime}=\langle 11,2-\sqrt{15}\rangle=\langle 2-\sqrt{15}\rangle$.

As $N(2+\sqrt{15})=N(2-\sqrt{15})=-11$, the solutions for $n=-11$ are $(2+\sqrt{15})(4+\sqrt{15})^{m}$ and $(2-\sqrt{15})(4+\sqrt{15})^{m}$ for $n \in \mathbb{Z}$. There is no element of norm 11, hence the equation for $n=11$ is not solvable.

Problem 2

In the lecture we saw that $3+\sqrt{10}$ is the fundamental unit of norm -1 .
(1) $n=7$.

We deduce from Dedekind's criterion that $\langle 7\rangle=\mathfrak{p}_{7}$ is maximal. It follows that there is no element of norm 7 , hence there is no solution to $x^{2}-10 y^{2}=7$.
(2) $n=8$.

We deduce from Dedekind's criterion that $\langle 2\rangle=\mathfrak{p}_{2}^{2}$, where $\mathfrak{p}_{2}=\langle\sqrt{10}, 2\rangle$. It follows that \mathfrak{p}_{2}^{3} is the unique ideal of norm 8 . Since \mathfrak{p}_{2} is not principal and $\mathfrak{p}_{2}^{3}=2 \mathfrak{p}_{2}$, there is no solution to $x^{2}-10 y^{2}=8$.

Problem 3

Note that for any $j=1, \cdots, r+s-1$ we have

$$
\log \left|\sigma_{1}\left(\epsilon_{j}\right)\right|+\cdots+\log \left|\sigma_{r}\left(\epsilon_{j}\right)\right|+2 \log \left|\sigma_{r+1}\left(\epsilon_{j}\right)\right|+2 \log \left|\sigma_{r+s}\left(\epsilon_{j}\right)\right|=0
$$

Thus it is sufficient to prove the following claim.
Claim. Let $M=\left(a_{i j}\right)_{1 \leq i \leq n, 1 \leq j \leq n-1}$ and suppose that $\sum_{i=1}^{n} a_{i j}=0$. Let M_{i} be the matrix obtained from M by deleting the i th column. Then $\left|\operatorname{det}\left(M_{i}\right)\right|$ is independent of i.

Proof of Claim. Without loss of generality let us show $\left|\operatorname{det}\left(M_{1}\right)\right|=\left|\operatorname{det}\left(M_{n}\right)\right|$. Let v_{i} be the i th column of M. It follows from $\sum_{i=1}^{n} a_{i j}=0$ that $\sum_{i=1}^{n} v_{i}=0$. By the properties of determinant we have

$$
\begin{aligned}
\left|\operatorname{det}\left(M_{1}\right)\right|=\left|\operatorname{det}\left(\begin{array}{lll}
v_{2} & \cdots & v_{n}
\end{array}\right)\right| & =\left|\operatorname{det}\left(\begin{array}{llll}
v_{2} & \cdots & v_{n-1} & -v_{1}-\cdots-v_{n-1}
\end{array}\right)\right| \\
& =\left|\operatorname{det}\left(\begin{array}{llll}
v_{2} & \cdots & v_{n-1} & -v_{1}
\end{array}\right)\right| \\
& =\left|\operatorname{det}\left(\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n-1}
\end{array}\right)\right|=\left|\operatorname{det}\left(M_{n}\right)\right| .
\end{aligned}
$$

Problem 4

For $A \in \mathrm{Cl}(K)$ and $\mathfrak{a} \in A^{-1}$ we clearly have $\left[\mathfrak{a}^{-1}\right]=A$. For $\mathfrak{a} \in A^{-1}$ and an integral ideal \mathfrak{c} in A, the ideal $\mathfrak{a c}$ is in [〈1〉], hence principal. Thus the map $\mathfrak{c} \mapsto \mathfrak{a c}$ sends an integral ideal in A to a principal ideal divisible by \mathfrak{a}.

We first show that the map $\mathfrak{c} \mapsto \mathfrak{a c}$ is injective. Let \mathfrak{c}_{1} and \mathfrak{c}_{2} be integral ideals in A and suppose that $\mathfrak{a c}=\mathfrak{a c}_{2}$. It directly implies $\mathfrak{c}_{1}=\mathfrak{a}^{-1}\left(\mathfrak{a c}_{1}\right)=$ $\mathfrak{a}^{-1}\left(\mathfrak{a c}_{2}\right)=\mathfrak{c}_{2}$.

We next show that the map is surjective. Let \mathfrak{b} be a principal ideal divisible by \mathfrak{a}. Then there exists an integral ideal \mathfrak{c} such that $\mathfrak{b}=\mathfrak{a c}$. Since $[\mathfrak{a}][\mathfrak{c}]=[\mathfrak{b}]=[\langle 1\rangle]$, we have $[\mathfrak{c}]=A$, hence \mathfrak{c} is an integral ideal in A.

Problem 5

Suppose that $x \in K_{\infty}$ satisfies
(1) $N(x) \neq 0$,
(2) $0 \leq \gamma_{i}<1$ for all $1 \leq i \leq r+s-1$, where

$$
\mathcal{L}(x)=\gamma_{0} \lambda+\gamma_{1} u_{1}+\cdots+\gamma_{r+s-1} u_{r+s-1},
$$

(3) $0 \leq \arg \left(x_{1}\right)<\frac{2 \pi}{\left|W_{K}\right|}$. Let $\alpha>0$. Then we have
(1) $N(\alpha x)=\alpha^{r+2 s} N(x) \neq 0$,
(2)
$\mathcal{L}(\alpha x)=\left(\begin{array}{c}\log \left|\sigma_{1}(\alpha x)\right| \\ \ddots \\ \log \left|\sigma_{r}(\alpha x)\right| \\ 2 \log \left|\sigma_{r+1}(\alpha x)\right| \\ \ddots \\ 2 \log \left|\sigma_{r+s}(\alpha x)\right|\end{array}\right)=\left(\begin{array}{c}\log \left|\sigma_{1}(x)\right| \\ \ddots \\ \log \left|\sigma_{r}(x)\right| \\ 2 \log \left|\sigma_{r+1}(x)\right| \\ \ddots \\ 2 \log \left|\sigma_{r+s}(x)\right|\end{array}\right)+\left(\begin{array}{c}\log \alpha \\ \ddots \\ \log \alpha \\ 2 \log \alpha \\ \ddots \\ 2 \log \alpha\end{array}\right)=\mathcal{L}(x)+\lambda \log \alpha$,
hence $\mathcal{L}(\alpha x)=\left(\gamma_{0}+\log \alpha\right) \lambda+\gamma_{1} u_{1}+\cdots+\gamma_{r+s-1} u_{r+s-1}$,
(3) $\arg \left(\alpha x_{1}\right)=\arg \left(x_{1}\right)$.

It follows that the set $X \subset K_{\infty}$ defined in Definition 10.18 is a cone.

