Problem sheet 10 Solutions

Problem 1

There exist x, y in the positive integers satisfying $x^2 - 15y^2 = n$ if any only if there exists an element $x + y\sqrt{15}$ of norm n. In Problem 3 of the previous problem sheet we saw that $4 + \sqrt{15}$ is the fundamental unit of norm 1, and hence there is no unit of norm -1.

(1) $n = \pm 4$.

We deduce from Dedekind's criterion that $\langle 2 \rangle = \mathfrak{p}_2^2$, where $\mathfrak{p}_2 = \langle 2, 1 + \sqrt{15} \rangle$. It follows that $\langle 2 \rangle$ is the unique ideal of norm 4, hence the solutions for n = 4 are just the twice of the solutions for n = 1, i.e. $2(4 + \sqrt{15})^m$ for $m \in \mathbb{Z}$. Since there is no unit of norm -1, there is no element of norm -4, hence the equation for n = -4 is not solvable.

(2) $n = \pm 7$.

We deduce from Dedekind's criterion that $\langle 7 \rangle = \mathfrak{p}_7 \mathfrak{p}_7'$, where $\mathfrak{p}_7 = \langle 7, 1 + \sqrt{15} \rangle$ and $\mathfrak{p}_7' = \langle 7, 1 - \sqrt{15} \rangle$.

One can check that the ideals $\langle 7, 1 + \sqrt{15} \rangle$ and $\langle 7, 1 - \sqrt{15} \rangle$ are not principal. Indeed, as the norm of $\langle 1 + \sqrt{15} \rangle$ and $\langle 1 - \sqrt{15} \rangle$ are 14, their factorization must be either $\mathfrak{p}_2\mathfrak{p}_7$ or $\mathfrak{p}_2\mathfrak{p}_7'$. In any case, \mathfrak{p}_7 and \mathfrak{p}_7' are not principal since \mathfrak{p}_2 is not principal.

It follows that there is no element of norm ± 7 , hence the equations for $n = \pm 7$ are not solvable.

(3) $n = \pm 11$.

We deduce from Dedekind's criterion that $\langle 11 \rangle = \mathfrak{p}_{11}\mathfrak{p}'_{11}$, where $\mathfrak{p}_{11} = \langle 11, 2 + \sqrt{15} \rangle = \langle 2 + \sqrt{15} \rangle$, $\mathfrak{p}'_{11} = \langle 11, 2 - \sqrt{15} \rangle = \langle 2 - \sqrt{15} \rangle$.

As $N(2 + \sqrt{15}) = N(2 - \sqrt{15}) = -11$, the solutions for n = -11 are $(2 + \sqrt{15})(4 + \sqrt{15})^m$ and $(2 - \sqrt{15})(4 + \sqrt{15})^m$ for $n \in \mathbb{Z}$. There is no element of norm 11, hence the equation for n = 11 is not solvable.

Problem 2

In the lecture we saw that $3 + \sqrt{10}$ is the fundamental unit of norm -1. (1) n = 7.

We deduce from Dedekind's criterion that $\langle 7 \rangle = \mathfrak{p}_7$ is maximal. It follows that there is no element of norm 7, hence there is no solution to $x^2 - 10y^2 = 7$. (2) n = 8.

We deduce from Dedekind's criterion that $\langle 2 \rangle = \mathfrak{p}_2^2$, where $\mathfrak{p}_2 = \langle \sqrt{10}, 2 \rangle$. It follows that \mathfrak{p}_2^3 is the unique ideal of norm 8. Since \mathfrak{p}_2 is not principal and $\mathfrak{p}_2^3 = 2\mathfrak{p}_2$, there is no solution to $x^2 - 10y^2 = 8$.

Problem 3

Note that for any $j = 1, \dots, r + s - 1$ we have

$$\log |\sigma_1(\epsilon_j)| + \dots + \log |\sigma_r(\epsilon_j)| + 2\log |\sigma_{r+1}(\epsilon_j)| + 2\log |\sigma_{r+s}(\epsilon_j)| = 0.$$

Thus it is sufficient to prove the following claim.

Claim. Let $M = (a_{ij})_{1 \le i \le n, 1 \le j \le n-1}$ and suppose that $\sum_{i=1}^{n} a_{ij} = 0$. Let M_i be the matrix obtained from M by deleting the *i*th column. Then $|\det(M_i)|$ is independent of *i*.

Proof of Claim. Without loss of generality let us show $|\det(M_1)| = |\det(M_n)|$. Let v_i be the *i*th column of M. It follows from $\sum_{i=1}^n a_{ij} = 0$ that $\sum_{i=1}^n v_i = 0$. By the properties of determinant we have

$$|\det(M_1)| = |\det(v_2 \cdots v_n)| = |\det(v_2 \cdots v_{n-1} - v_1 - \cdots - v_{n-1})|$$

= $|\det(v_2 \cdots v_{n-1} - v_1)|$
= $|\det(v_1 v_2 \cdots v_{n-1})| = |\det(M_n)|.$

Problem 4

For $A \in \operatorname{Cl}(K)$ and $\mathfrak{a} \in A^{-1}$ we clearly have $[\mathfrak{a}^{-1}] = A$. For $\mathfrak{a} \in A^{-1}$ and an integral ideal \mathfrak{c} in A, the ideal \mathfrak{ac} is in $[\langle 1 \rangle]$, hence principal. Thus the map $\mathfrak{c} \mapsto \mathfrak{ac}$ sends an integral ideal in A to a principal ideal divisible by \mathfrak{a} .

We first show that the map $\mathbf{c} \mapsto \mathbf{ac}$ is injective. Let \mathbf{c}_1 and \mathbf{c}_2 be integral ideals in A and suppose that $\mathbf{ac}_1 = \mathbf{ac}_2$. It directly implies $\mathbf{c}_1 = \mathbf{a}^{-1}(\mathbf{ac}_1) = \mathbf{a}^{-1}(\mathbf{ac}_2) = \mathbf{c}_2$.

We next show that the map is surjective. Let \mathfrak{b} be a principal ideal divisible by \mathfrak{a} . Then there exists an integral ideal \mathfrak{c} such that $\mathfrak{b} = \mathfrak{a}\mathfrak{c}$. Since $[\mathfrak{a}][\mathfrak{c}] = [\mathfrak{b}] = [\langle 1 \rangle]$, we have $[\mathfrak{c}] = A$, hence \mathfrak{c} is an integral ideal in A.

Problem 5

Suppose that $x \in K_{\infty}$ satisfies (1) $N(x) \neq 0$, (2) $0 \leq \gamma_i < 1$ for all $1 \leq i \leq r+s-1$, where

$$\mathcal{L}(x) = \gamma_0 \lambda + \gamma_1 u_1 + \dots + \gamma_{r+s-1} u_{r+s-1},$$

 $\begin{array}{l} (3) \ 0 \leq \arg(x_1) < \frac{2\pi}{|W_K|}.\\ \text{Let } \alpha > 0. \ \text{Then we have}\\ (1) \ N(\alpha x) = \alpha^{r+2s} N(x) \neq 0,\\ (2) \end{array}$

$$\mathcal{L}(\alpha x) = \begin{pmatrix} \log |\sigma_1(\alpha x)| \\ \ddots \\ \log |\sigma_r(\alpha x)| \\ 2\log |\sigma_r(\alpha x)| \\ 2\log |\sigma_{r+1}(\alpha x)| \\ \ddots \\ 2\log |\sigma_{r+s}(\alpha x)| \end{pmatrix} = \begin{pmatrix} \log |\sigma_1(x)| \\ \ddots \\ \log |\sigma_r(x)| \\ 2\log |\sigma_r(x)| \\ 2\log |\sigma_{r+1}(x)| \\ \ddots \\ 2\log |\sigma_{r+s}(x)| \end{pmatrix} + \begin{pmatrix} \log \alpha \\ \ddots \\ \log \alpha \\ 2\log \alpha \\ \ddots \\ 2\log \alpha \\ \ddots \\ 2\log \alpha \end{pmatrix} = \mathcal{L}(x) + \lambda \log \alpha,$$

hence $\mathcal{L}(\alpha x) = (\gamma_0 + \log \alpha)\lambda + \gamma_1 u_1 + \dots + \gamma_{r+s-1} u_{r+s-1},$ (3) $\arg(\alpha x_1) = \arg(x_1).$

It follows that the set $X \subset K_{\infty}$ defined in Definition 10.18 is a cone.