
Problem sheet 10 Solutions

Problem 1

There exist x, y in the positive integers satisfying x2 − 15y2 = n if any only
if there exists an element x+ y

√
15 of norm n. In Problem 3 of the previous

problem sheet we saw that 4 +
√
15 is the fundamental unit of norm 1, and

hence there is no unit of norm −1.
(1) n = ±4.

We deduce from Dedekind’s criterion that ⟨2⟩ = p22, where p2 = ⟨2, 1+
√
15⟩.

It follows that ⟨2⟩ is the unique ideal of norm 4, hence the solutions for n = 4
are just the twice of the solutions for n = 1, i.e. 2(4 +

√
15)m for m ∈ Z.

Since there is no unit of norm −1, there is no element of norm −4, hence
the equation for n = −4 is not solvable.

(2) n = ±7.
We deduce from Dedekind’s criterion that ⟨7⟩ = p7p

′
7, where p7 = ⟨7, 1+

√
15⟩

and p′7 = ⟨7, 1−
√
15⟩.

One can check that the ideals ⟨7, 1 +
√
15⟩ and ⟨7, 1 −

√
15⟩ are not

principal. Indeed, as the norm of ⟨1 +
√
15⟩ and ⟨1 −

√
15⟩ are 14, their

factorization must be either p2p7 or p2p
′
7. In any case, p7 and p′7 are not

principal sincep2 is not principal.
It follows that there is no element of norm ±7, hence the equations for

n = ±7 are not solvable.
(3) n = ±11.

We deduce from Dedekind’s criterion that ⟨11⟩ = p11p
′
11, where p11 = ⟨11, 2+√

15⟩ = ⟨2 +
√
15⟩, p′11 = ⟨11, 2−

√
15⟩ = ⟨2−

√
15⟩.

As N(2 +
√
15) = N(2 −

√
15) = −11, the solutions for n = −11 are

(2 +
√
15)(4 +

√
15)m and (2 −

√
15)(4 +

√
15)m for n ∈ Z. There is no

element of norm 11, hence the equation for n = 11 is not solvable.

Problem 2

In the lecture we saw that 3 +
√
10 is the fundamental unit of norm −1.

(1) n = 7.
We deduce from Dedekind’s criterion that ⟨7⟩ = p7 is maximal. It follows
that there is no element of norm 7, hence there is no solution to x2−10y2 = 7.

(2) n = 8.
We deduce from Dedekind’s criterion that ⟨2⟩ = p22, where p2 = ⟨

√
10, 2⟩. It

follows that p32 is the unique ideal of norm 8. Since p2 is not principal and
p32 = 2p2, there is no solution to x2 − 10y2 = 8.
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Problem 3

Note that for any j = 1, · · · , r + s− 1 we have

log |σ1(ϵj)|+ · · ·+ log |σr(ϵj)|+ 2 log |σr+1(ϵj)|+ 2 log |σr+s(ϵj)| = 0.

Thus it is sufficient to prove the following claim.

Claim. Let M = (aij)1≤i≤n,1≤j≤n−1 and suppose that
n∑

i=1

aij = 0.

Let Mi be the matrix obtained from M by deleting the ith column. Then
| det(Mi)| is independent of i.

Proof of Claim. Without loss of generality let us show |det(M1)| = |det(Mn)|.

Let vi be the ith column of M . It follows from
n∑

i=1

aij = 0 that
n∑

i=1

vi = 0.

By the properties of determinant we have

| det(M1)| = | det
(
v2 · · · vn

)
| = |det

(
v2 · · · vn−1 −v1 − · · · − vn−1

)
|

= |det
(
v2 · · · vn−1 −v1

)
|

= |det
(
v1 v2 · · · vn−1

)
| = | det(Mn)|.

Problem 4

For A ∈ Cl(K) and a ∈ A−1 we clearly have [a−1] = A. For a ∈ A−1 and an
integral ideal c in A, the ideal ac is in [⟨1⟩], hence principal. Thus the map
c 7→ ac sends an integral ideal in A to a principal ideal divisible by a.

We first show that the map c 7→ ac is injective. Let c1 and c2 be integral
ideals in A and suppose that ac1 = ac2. It directly implies c1 = a−1(ac1) =
a−1(ac2) = c2.

We next show that the map is surjective. Let b be a principal ideal
divisible by a. Then there exists an integral ideal c such that b = ac. Since
[a][c] = [b] = [⟨1⟩], we have [c] = A, hence c is an integral ideal in A.

Problem 5

Suppose that x ∈ K∞ satisfies
(1) N(x) ̸= 0,
(2) 0 ≤ γi < 1 for all 1 ≤ i ≤ r + s− 1, where

L(x) = γ0λ+ γ1u1 + · · ·+ γr+s−1ur+s−1,
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(3) 0 ≤ arg(x1) <
2π

|WK | .
Let α > 0. Then we have

(1) N(αx) = αr+2sN(x) ̸= 0,
(2)

L(αx) =



log |σ1(αx)|
. . .

log |σr(αx)|
2 log |σr+1(αx)|

. . .
2 log |σr+s(αx)|


=



log |σ1(x)|
. . .

log |σr(x)|
2 log |σr+1(x)|

. . .
2 log |σr+s(x)|


+



logα
. . .

logα
2 logα

. . .
2 logα


= L(x)+λ logα,

hence L(αx) = (γ0 + logα)λ+ γ1u1 + · · ·+ γr+s−1ur+s−1,
(3) arg(αx1) = arg(x1).

It follows that the set X ⊂ K∞ defined in Definition 10.18 is a cone.
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