
Problem sheet 2 Solutions

Problem 1

Let N be the largest number such that N2 divides ∆[1,
√
d]. As we evaluate

∆[1,
√
d] = det

(
1

√
d

1 −
√
d

)2

= 4d,

we get N = 2. Following the algorithm given in the proof of Theorem 3.21,
it suffices to check if 1

2 ,
√
d
2 , and 1+

√
d

2 are algebraic integers or not. The
minimal polynomials of 1

2 and
√
d
2 are 2x−1 and 4x2−d, respectively, hence

1
2 and

√
d
2 are not algebraic integer. By straightforward computation one

can also check that the minimal polynomial of 1+
√
d

2 is 4x2 − 4x− (d− 1) if
d ̸≡ 1(mod4) and x2 − x− d−1

4 if d ≡ 1(mod4).
If d ̸≡ 1(mod4), then none of 1

2 ,
√
d
2 , and 1+

√
d

2 is an algebraic integer,
hence {1,

√
d} is an integral basis. If d ≡ 1(mod4), then 1+

√
d

2 is an algebraic
integer and we also have

det

(
1 1+

√
d

2

1 1−
√
d

2

)2

= d.

Since d is square-free, {1, 1+
√
d

2 } is an integral basis.

Problem 2

It suffices to show that {1, α, α2} is an integral basis of Ok. Let σ1, σ2, σ3 be
the complex embeddings of K and denote θi = σi(α) for i = 1, 2, 3. We also
denote s1 = θ1 + θ2 + θ3, s2 = θ1θ2 + θ2θ3 + θ3θ1, and s3 = θ1θ2θ3. We have

s1 = 0, s2 = 2, s3 = −1

by Vieta’s formulas. We now evaluate ∆[1, α, α2] using Proposition 2.39:

∆[1, α, α2] = (−1)
32̇
2 NK/Q(Df(θ)) = −NK/Q(3α

2 + 2)

−
3∏

i=1

σi(3α
2 + 2) = −

3∏
i=1

(3σi(α)
2 + 2) = −(3θ21 + 2)(3θ22 + 2)(3θ23 + 2)

= −27θ21θ
2
2θ

2
3 − 18(θ21θ

2
2 + θ22θ

2
3 + θ23θ

2
1)− 12(θ21 + θ22 + θ23)− 8

= −27s23 − 18(s22 − 2s1s3)− 12(s21 − 2s2)− 8 = −59.

Note that ∆[1, α, α2] = −59 is square-free. By Corollary 3.22, {1, α, α2} is
an integral basis of Ok, hence Ok = Z[α].
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Problem 3

As θ1, · · · , θn is an integral basis of K and α1, · · · , αn ∈ OK , there exist
dij ∈ Z for 1 ≤ i, j ≤ n such that

αi =

n∑
j=1

dijθj .

Let D be the integral matrix given by D = (dij)1≤i,j≤n. By Proposition
2.32, we have

∆[α1, · · · , αn] = det(D)2∆[θ1, · · · , θn]. (1)

If ∆[α1, · · · , αn] = ∆[θ1, · · · , θn], then detD = ±1, hence D−1 is an
integral matrix. We may write D−1 = (fij)1≤i,j≤n, where fij ∈ Z. It follows

that θi =
n∑

j=1

fijαj for 1 ≤ i ≤ n. Any elements in OK is expressed by a Z-

linear combination of θ1, · · · , θn, hence Z-linear combination of α1, · · · , αn.
Thus, α1, · · · , αn is an integral basis of K.

Conversely, suppose that α1, · · · , αn is an integral basis of K. As both of
{θ1, · · · , θn} and {α1, · · · , αn} are integral bases, there exist F = (fij)1≤i,j≤n

with fij ∈ Z such that θi =

n∑
j=1

fijαj . Then by Proposition 2.32 we have

∆[θ1, · · · , θn] = det(F )2∆[α1, · · · , αn]. (2)

Note that det(D), det(F ) ∈ Z. Combining (1) and (2), we conclude that
∆[θ1, · · · , θn] = ∆[α1, · · · , αn].

Problem 4

The minimal polynomial of 3
1
3 is f(t) = t3 − 3. This is a special case of

Example 3.31 for p = 3.

Problem 5

(a) Let L be the Galois closure of K over Q. For an element τ of the
Galois group of L and a complex embedding σ of K, τ ◦ σ is also a complex
embedding of K. It follows that τ induces a permutation of {σ1, · · · , σn}.

If the permutation induced by τ is even, then we have τP = P and
τN = N . If the permutation is odd, then we have τP = N and τN = P . In
either cases, τ fixes P +N and PN . To sum up, P +N and PN are fixed
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by every elements of the Galois group of L, hence they are rational. On the
other hand, they are also algebraic integers. Therefore, P +N and PN are
integers.

(b) Observe that det(σi(xj))1≤i,j≤n = P −N . It follows that

∆[x1, · · · , xn] =
(
det(σi(xj))1≤i,j≤n

)2
= (P −N)2 = (P +N)2 − 4PN.

Since we have P +N,PN ∈ Z from (a), ∆[x1, · · · , xn] ≡ 1(mod4).
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