
Problem sheet 3 Solutions

Problem 1

Note that the norm of a+ b
√
−d ∈ K with a, b ∈ Q is given by a2 + db2.

Case 1: d ̸≡ 3 (mod4).
In this case {1,

√
−d} is an integral basis of K, so any element in OK can be

written a+ b
√
−d, where a, b ∈ Z. Since N(a+ b

√
−d) = a2 + db2 is always

bigger than 1 unless (a, b) = (±1, 0), ±1 are the only units in OK .
Case 2: d ≡ 3 (mod4) and d ≥ 7.

In this case {1, 1+
√
−d

2 } is an integral basis of K, so any element in OK can

be written a + b
(
1+

√
−d

2

)
, where a, b ∈ Z. Since N

(
a+ b

(
1+

√
−d

2

))
=

a2 + ab+ (d+1
4 )b2 is always bigger than 1 unless (a, b) = (±1, 0), ±1 are the

only units in OK .
Case 3: d = 3.

In this case {1, 1+
√
−3

2 } is an integral basis of K, and the norm of a +

b
(
1+

√
−3

2

)
is a2 + ab + b2. The integral solutions of a2 + ab + b2 = ±1 are

(a, b) = (±1, 0), (0,±1), (±1,∓1), and these solutions are corresponding to
±1,±ω,±ω2, which are the units in OK .

Problem 2

{1,
√
2} is an integral basis of K. To show that there are infinitely many units

in OK , it suffices to prove that there are infinitely many integral solutions
of N(x + y

√
2) = ±1, i.e. (x + y

√
2)(x − y

√
2) = ±1. We can easily find a

solution (x1, y1) = (1, 1). Now we generate infinitely many integral solutions
from (x1, y1) = (1, 1). From (1 +

√
2)(1−

√
2) = 1, we have

(1 +
√
2)n(1−

√
2)n = (−1)n.

We can write (1 +
√
2)n = xn + yn

√
2 and (1−

√
2)n = xn − yn

√
2 for some

xn, yn ∈ N, and one can also check xn is increasing. Hence, N(xn + y
√
2) =

±1 for all n ∈ N and xn + yn
√
2’s are infinitely many units OK .

Problem 3

(a) The minimal polynomial of ζ is f(t) = t4+t3+t2+t+1. Let σ1, σ2, σ3, σ4
be the complex embeddings of K and let θi = σi(ζ) for i = 1, 2, 3, 4. We also
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write

s1 =
4∑

i=1

θi, s2 =
∑
i ̸=j

θiθj , s3 =
∑

i ̸=j ̸=k

θiθjθk, s4 =
4∏

i=1

θi.

From the coefficients of the minimal polynomial f(t) we evaluate s1 = −1,
s2 = 1, s3 = −1, and s4 = 1. Then

N(ζ + 2) =
4∏

i=1

σi(ζ + 2) =
4∏

i=1

(θi + 2)

= 16 + 8s1 + 4s2 + 2s3 + s4 = 11.

Similarly, we also get N(ζ − 2) = 16− 8s1 + 4s2 − 2s3 + s4 = 31.
(b) As N(ζ +2) = 11 and N(ζ − 2) = 31 are primes, ζ +2 and ζ − 2 are

irreducible in Z[ζ].

Problem 4

(a) Suppose that x = ab for some a, b ∈ R. If x is prime, then either x|a
or x|b. To prove that x is irreducible, it suffices to show that either a or b
is a unit. Without loss of generality, we may assume x|a, i.e. there exists
c ∈ R such that a = xc. It follows that x = ab = xcb. Since R is an integral
domain we have 1 = cb, hence b is a unit.

(b) The converse is false: 2 is irreducible but not a prime in Z[
√
−5].

Let us consider the factorization 6 = 2× 3 = (1 +
√
−5)(1−

√
5). Since

N(2) = 4 and N(1 +
√
−5) = N(1 −

√
−5) = 6, 2 does not divide neither

1 +
√
−5 nor 1−

√
−5. Hence, 2 is not a prime in Z[

√
−5].

Now we show that 2 is irreducible. If there exist a, b ∈ OK \ O×
K such

that 2 = ab, then we have N(a)N(b) = N(2) = 4, so N(a) = N(b) = 2.
However, it is impossible because the norm of any element in OK must be
in form of x2 + 5y2, where x, y ∈ Z. Thus, 2 is irreducible.

(c) For any x ∈ Z[
√
−5] we claim that if 5|N(x), then

√
−5|x. To see

this, let x = a + b
√
−5 for some a, b ∈ Z. If 5|N(x) = a2 + 5b2, then

we have 5|a, so we can write a = 5a′ for some a′ ∈ Z. It follows that
x = 5a′ + b

√
−5 =

√
−5(b− a′

√
−5), hence

√
−5|x.

Now we prove that
√
−5 is a prime. If

√
−5|xy, then 5 = N(

√
−5)|N(x)N(y).

It implies that either 5|N(x) or 5|N(y). By the above claim, we conclude
that either

√
−5|x or

√
−5|y.
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Problem 5

(a) Observe that f−1(I) is the kernel of the map R → S → S/I. It implies
that f−1(I) is an ideal of R.

(b) False. Let R = Z, S = Q, and σ : Z → Q be the inclusion map. For
any n ∈ N, nZ is an ideal of Z but not an ideal of Q.

Problem 6

As Z[i] is a Euclidean domain, we may apply Euclidean division algorithm.
As a result, the greatest common divisor of 4 + 7i = (2 + i)(3 + 2i) and
1 + 3i = (2 + i)(1 + i) is 2 + i.
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