Problem sheet 3 Solutions

Problem 1

Note that the norm of a + bv/—d € K with a,b € Q is given by a? + db?.
Case 1: d # 3 (mod4).
In this case {1,v/—d} is an integral basis of K, so any element in O can be
written a + byv/—d, where a,b € Z. Since N(a + byv/—d) = a® + db? is always
bigger than 1 unless (a,b) = (£1,0), £1 are the only units in Og.
Case 2: d =3 (mod4) and d > 7.

In this case {1, 1+ % 7d} is an integral basis of K, so any element in Ok can

be written a + b (Hﬁ), where a,b € Z. Since N (a—l—b (L\Z/jd)) =
a? 4 ab + (LH)b? is always bigger than 1 unless (a,b) = (£1,0), £1 are the
only units in Og.

Case 3: d = 3.
In this case {1, 1+2£} is an integral basis of K, and the norm of a +
b (HT\/:%) is a® + ab + b*. The integral solutions of a? + ab + b?> = %1 are

(a,b) = (£1,0),(0,+£1),(£1,F1), and these solutions are corresponding to
+1, 4w, +w?, which are the units in O .

Problem 2

{1,/2} is an integral basis of K. To show that there are infinitely many units
in Of, it suffices to prove that there are infinitely many integral solutions
of N(z +yv2) = £1, ie. (z+yv2)(x —yv2) = +1. We can easily find a
solution (z1,y1) = (1,1). Now we generate infinitely many integral solutions
from (21,1) = (1,1). From (1 ++/2)(1 — v/2) = 1, we have

(1+vV2)"(1 —V2)" = (-1)™.

We can write (1 +v2)" = 2, + ynv/2 and (1 — V2)" = 2, — y, /2 for some
Zn,Yn € N, and one can also check z,, is increasing. Hence, N(x,, + yﬂ) =
+1 for all n € N and z,, + y,V/2’s are infinitely many units Ok-.

Problem 3

(a) The minimal polynomial of ¢ is f(t) = t*+t3+t2+t+1. Let 01,02, 03,04
be the complex embeddings of K and let 0; = 0;(¢) for i = 1,2,3,4. We also



write

4 4
S§1 — Z 9@, SS9 — Zeiﬁj, S§3 — Z Giﬁjek, S4 = Hgl
=1 =1

i#j i#j#k

From the coefficients of the minimal polynomial f(¢) we evaluate s; = —1,
s9=1,83=—1,and s4 = 1. Then

4 4
N(¢+2) =[[eoi¢+2)=T]6: +2)
=1 =1
= 16 + 8s1 + 4s9 + 253 + s4 = 11.

Similarly, we also get N({ —2) = 16 — 8s1 + 4s9 — 2s3 + s4 = 31.
(b) As N(¢+2) =11 and N(¢ —2) = 31 are primes, ( +2 and { — 2 are
irreducible in Z[(].

Problem 4

(a) Suppose that x = ab for some a,b € R. If x is prime, then either z|a
or z|b. To prove that x is irreducible, it suffices to show that either a or b
is a unit. Without loss of generality, we may assume x|a, i.e. there exists
¢ € R such that a = zc. It follows that £ = ab = xcb. Since R is an integral
domain we have 1 = ¢b, hence b is a unit.

(b) The converse is false: 2 is irreducible but not a prime in Z[v/=5].

Let us consider the factorization 6 = 2 x 3 = (14 /=5)(1 — v/5). Since
N(2) = 4 and N(1 ++/-5) = N(1 — /=5) = 6, 2 does not divide neither
1+ +/—=5nor 1 — \/=5. Hence, 2 is not a prime in Z[y/—5].

Now we show that 2 is irreducible. If there exist a,b € Ok \ O such
that 2 = ab, then we have N(a)N(b) = N(2) = 4, so N(a) = N(b) = 2.
However, it is impossible because the norm of any element in O must be
in form of 2 + 5y%, where z,y € Z. Thus, 2 is irreducible.

(c) For any x € Z[y/—5] we claim that if 5|N(z), then v/=5|z. To see
this, let = a + by/—5 for some a,b € Z. If 5|N(z) = a® + 5b%, then
we have 5|a, so we can write a = 5a’ for some o' € Z. It follows that
x = 5a’ + by/=5 = v/=5(b — a’\/=5), hence /=5|z.

Now we prove that /=5 is a prime. If v/—5|zy, then 5 = N(v/=5)|N(z)N(y).
It implies that either 5|N(z) or 5|N(y). By the above claim, we conclude

that either v/—5|z or v/—5|y.



Problem 5

(a) Observe that f~1(I) is the kernel of the map R — S — S/I. It implies
that f~1(I) is an ideal of R.

(b) False. Let R=7Z, S =Q, and ¢ : Z — Q be the inclusion map. For
any n € N, nZ is an ideal of Z but not an ideal of Q.

Problem 6

As Z]i] is a Euclidean domain, we may apply Euclidean division algorithm.
As a result, the greatest common divisor of 4 + 7i = (2 + )(3 + 2i) and
14+3i= (2+4)(1+1) is 2+14.



