
Problem sheet 4 Solutions

Problem 1

Note that K(t)/⟨f(t)⟩ is a field if and only if ⟨f(t)⟩ is a maximal ideal.
Hence, it suffices to show that f(t) is irreducible if and only if ⟨f(t)⟩ is a
maximal ideal.

Suppose that f(t) is irreducible and I is an ideal containing ⟨f(t)⟩. Since
K(t) is Euclidean, K(t) is a principal ideal domain. It follows that there
exists g(t) ∈ K(t) such that I = ⟨g(t)⟩. As ⟨f(t)⟩ ⊆ ⟨g(t)⟩, we have g(t)|f(t).
Since f(t) is irreducible, either g(t) or f(t)

g(t) is a unit, hence either I = K(t)

or I = ⟨f(t)⟩. Thus, ⟨f(t)⟩ is a maximal ideal.
Conversely, if f(t) is reducible, then there exist g(t), h(t) ∈ K(t) such

that neither g(t) nor h(t) is a unit. Then ⟨g(t)⟩ ≠ K(t) is an ideal properly
containing ⟨f(t)⟩, so ⟨f(t)⟩ is not a maximal ideal.

Problem 2

Suppose that b is a fractional ideal, i.e. there exist a ∈ OK and c ∈ OK \{0}
such that b = c−1a. Then the condition (a) is clear. We also have (b) since
bOK = c−1aOK ⊆ c−1a = b. The condition (c) also holds for x = c.

Conversely, suppose that b satisfies (a),(b), and (c). Let x ∈ OK be the
element satisfying xb ⊆ OK as in (c). Then (a) and (b) imply that a = xb
is an ideal of OK . Thus b = x−1a is a fractional ideal.

Problem 3

{1, 1+
√
−3

2 } is an integral basis of K, so x+y
√
−3 with x, y ∈ Q is contained

in OK if and only if x+ y, x− y ∈ Z. It follows that

a−1 = {α ∈ K : αa ⊆ OK}

= {x+ y
√
−3 : x, y ∈ Q, (x+ y

√
−3)

〈
2,

1−
√
−3

2

〉
⊆ OK}

= {x+ y
√
−3 : x, y ∈ Q, 2x+ 2y

√
−3,

x+ 3y

2
+

y − x

2

√
−3 ∈ OK}

= {x+ y
√
−3 : 2x+ 2y, 2x− 2y, 2y, x+ y ∈ Z}

= {x+ y
√
−3 : 2y, x− y ∈ Z} = OK .
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Problem 4

(a) {1,
√
5} is an integral basis of Q(

√
5). Let M1 be the base-change matrix

from {1,
√
5} to {2, 1+

√
5}, and M2 be the base-change matrix from {1,

√
5}

to {3, 1−
√
5}. Then we have

M1 =

(
2 0
1 1

)
, M2 =

(
3 0
1 −1

)
.

Since OK/p1 ∼= Z2/(M1Z2) ∼= Z/2Z and OK/p2 ∼= Z2/(M2Z2) ∼= Z/3Z are
fields, p1 and p2 are maximal ideals. By Proposition 4.65 we also have

|OK/p1| = N(p1) = |det(M1)| = 2,

|OK/p2| = N(p2) = |det(M2)| = 3.

(b) Suppose that p1 is a principal ideal, i.e. there exists x ∈ OK\O×
K such

that ⟨x⟩ = ⟨2, 1 +
√
−5⟩. Then x|2 and x|1 +

√
−5, hence N(x)|N(2) = 4

and N(x)|N(1 +
√
−5) = 6. It follows that N(x) = 2. However, there is no

x ∈ OK satisfying N(x) = 2 as there is no integral solution of a2 + 5b2 = 2.
Thus, p1 is not a principal ideal. The same argument still works for p2.

(c) Note that

p1p2 = ⟨2 · 3, 2 · (1−
√
−5), (1 +

√
−5) · 3, (1 +

√
−5)(1−

√
−5))⟩

= ⟨6, 2(1−
√
−5), 3(1 +

√
−5).⟩

As 6 = (1 +
√
−5)(1 −

√
−5) and 3(1 +

√
−5) = (−2 +

√
−5)(1 −

√
−5),

we have p1p2 ⊆ ⟨1 −
√
−5⟩. On the other hand, 1 −

√
−5 ∈ p1p2 since

1 −
√
−5 = 6 − (2 − 2

√
−5) − (3 + 3

√
−5). Thus, p1p2 is principal and

1−
√
−5 is a generator.

Problem 5

Recall that Z[i] is a Euclidean domain (see the proof of Theorem 4.8), hence
Z[i] is a principal ideal domain. It follows that all fractional ideals in Z[i]
must be in a form of b

aZ[i], where a, b ∈ Z[i], a ̸= 0, and gcd(a, b) = 1.

Problem 6

Let e1 = 1, e2, · · · , en be a Z-basis of OK , and f1, · · · , fn be a Z-basis of a,
where n is the degree of K. Let M be the integral base-change matrix from
e1, · · · , en to f1, · · · , fn. Note that there exists integral matrix X such that
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XM = MX = det(M) Idn. It follows that X is the integral base-change
matrix from f1, · · · , fn to det(M)e1, · · · ,det(M)en. In particular, N(a) =
det(M) = det(M)e1 can be expressed by an integral linear combination of
f1, · · · , fn, hence N(a) ∈ a.
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