Problem sheet 4 Solutions

Problem 1

Note that $K(t)/\langle f(t) \rangle$ is a field if and only if $\langle f(t) \rangle$ is a maximal ideal. Hence, it suffices to show that f(t) is irreducible if and only if $\langle f(t) \rangle$ is a maximal ideal.

Suppose that f(t) is irreducible and I is an ideal containing $\langle f(t) \rangle$. Since K(t) is Euclidean, K(t) is a principal ideal domain. It follows that there exists $g(t) \in K(t)$ such that $I = \langle g(t) \rangle$. As $\langle f(t) \rangle \subseteq \langle g(t) \rangle$, we have g(t)|f(t). Since f(t) is irreducible, either g(t) or $\frac{f(t)}{g(t)}$ is a unit, hence either I = K(t) or $I = \langle f(t) \rangle$. Thus, $\langle f(t) \rangle$ is a maximal ideal.

Conversely, if f(t) is reducible, then there exist $g(t), h(t) \in K(t)$ such that neither g(t) nor h(t) is a unit. Then $\langle g(t) \rangle \neq K(t)$ is an ideal properly containing $\langle f(t) \rangle$, so $\langle f(t) \rangle$ is not a maximal ideal.

Problem 2

Suppose that \mathfrak{b} is a fractional ideal, i.e. there exist $\mathfrak{a} \in O_K$ and $c \in O_K \setminus \{0\}$ such that $\mathfrak{b} = c^{-1}\mathfrak{a}$. Then the condition (a) is clear. We also have (b) since $\mathfrak{b}O_K = c^{-1}\mathfrak{a}O_K \subseteq c^{-1}\mathfrak{a} = \mathfrak{b}$. The condition (c) also holds for x = c.

Conversely, suppose that \mathfrak{b} satisfies (a),(b), and (c). Let $x \in O_K$ be the element satisfying $x\mathfrak{b} \subseteq O_K$ as in (c). Then (a) and (b) imply that $\mathfrak{a} = x\mathfrak{b}$ is an ideal of O_K . Thus $\mathfrak{b} = x^{-1}\mathfrak{a}$ is a fractional ideal.

Problem 3

 $\{1, \frac{1+\sqrt{-3}}{2}\}\$ is an integral basis of K, so $x + y\sqrt{-3}$ with $x, y \in \mathbb{Q}$ is contained in O_K if and only if $x + y, x - y \in \mathbb{Z}$. It follows that

$$\begin{aligned} \mathfrak{a}^{-1} &= \{ \alpha \in K : \alpha \mathfrak{a} \subseteq O_K \} \\ &= \{ x + y\sqrt{-3} : x, y \in \mathbb{Q}, (x + y\sqrt{-3}) \left\langle 2, \frac{1 - \sqrt{-3}}{2} \right\rangle \subseteq O_K \} \\ &= \{ x + y\sqrt{-3} : x, y \in \mathbb{Q}, 2x + 2y\sqrt{-3}, \frac{x + 3y}{2} + \frac{y - x}{2}\sqrt{-3} \in O_K \} \\ &= \{ x + y\sqrt{-3} : 2x + 2y, 2x - 2y, 2y, x + y \in \mathbb{Z} \} \\ &= \{ x + y\sqrt{-3} : 2y, x - y \in \mathbb{Z} \} = O_K. \end{aligned}$$

Problem 4

(a) $\{1, \sqrt{5}\}$ is an integral basis of $\mathbb{Q}(\sqrt{5})$. Let M_1 be the base-change matrix from $\{1, \sqrt{5}\}$ to $\{2, 1+\sqrt{5}\}$, and M_2 be the base-change matrix from $\{1, \sqrt{5}\}$ to $\{3, 1-\sqrt{5}\}$. Then we have

$$M_1 = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 3 & 0 \\ 1 & -1 \end{pmatrix}.$$

Since $O_K/\mathfrak{p}_1 \cong \mathbb{Z}^2/(M_1\mathbb{Z}^2) \cong \mathbb{Z}/2\mathbb{Z}$ and $O_K/\mathfrak{p}_2 \cong \mathbb{Z}^2/(M_2\mathbb{Z}^2) \cong \mathbb{Z}/3\mathbb{Z}$ are fields, \mathfrak{p}_1 and \mathfrak{p}_2 are maximal ideals. By Proposition 4.65 we also have

$$|O_K/\mathfrak{p}_1| = N(\mathfrak{p}_1) = |\det(M_1)| = 2,$$

 $|O_K/\mathfrak{p}_2| = N(\mathfrak{p}_2) = |\det(M_2)| = 3.$

(b) Suppose that \mathfrak{p}_1 is a principal ideal, i.e. there exists $x \in O_K \setminus O_K^{\times}$ such that $\langle x \rangle = \langle 2, 1 + \sqrt{-5} \rangle$. Then x|2 and $x|1 + \sqrt{-5}$, hence N(x)|N(2) = 4 and $N(x)|N(1 + \sqrt{-5}) = 6$. It follows that N(x) = 2. However, there is no $x \in O_K$ satisfying N(x) = 2 as there is no integral solution of $a^2 + 5b^2 = 2$. Thus, \mathfrak{p}_1 is not a principal ideal. The same argument still works for \mathfrak{p}_2 .

(c) Note that

$$\mathfrak{p}_1 \mathfrak{p}_2 = \langle 2 \cdot 3, 2 \cdot (1 - \sqrt{-5}), (1 + \sqrt{-5}) \cdot 3, (1 + \sqrt{-5})(1 - \sqrt{-5})) \rangle$$

= $\langle 6, 2(1 - \sqrt{-5}), 3(1 + \sqrt{-5}). \rangle$

As $6 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ and $3(1 + \sqrt{-5}) = (-2 + \sqrt{-5})(1 - \sqrt{-5})$, we have $\mathfrak{p}_1\mathfrak{p}_2 \subseteq \langle 1 - \sqrt{-5} \rangle$. On the other hand, $1 - \sqrt{-5} \in \mathfrak{p}_1\mathfrak{p}_2$ since $1 - \sqrt{-5} = 6 - (2 - 2\sqrt{-5}) - (3 + 3\sqrt{-5})$. Thus, $\mathfrak{p}_1\mathfrak{p}_2$ is principal and $1 - \sqrt{-5}$ is a generator.

Problem 5

Recall that $\mathbb{Z}[i]$ is a Euclidean domain (see the proof of Theorem 4.8), hence $\mathbb{Z}[i]$ is a principal ideal domain. It follows that all fractional ideals in $\mathbb{Z}[i]$ must be in a form of $\frac{b}{a}\mathbb{Z}[i]$, where $a, b \in \mathbb{Z}[i], a \neq 0$, and gcd(a, b) = 1.

Problem 6

Let $e_1 = 1, e_2, \dots, e_n$ be a \mathbb{Z} -basis of O_K , and f_1, \dots, f_n be a \mathbb{Z} -basis of \mathfrak{a} , where *n* is the degree of *K*. Let *M* be the integral base-change matrix from e_1, \dots, e_n to f_1, \dots, f_n . Note that there exists integral matrix *X* such that $XM = MX = \det(M) \operatorname{Id}_n$. It follows that X is the integral base-change matrix from f_1, \dots, f_n to $\det(M)e_1, \dots, \det(M)e_n$. In particular, $N(\mathfrak{a}) = \det(M) = \det(M)e_1$ can be expressed by an integral linear combination of f_1, \dots, f_n , hence $N(\mathfrak{a}) \in \mathfrak{a}$.