Problem sheet 4 Solutions

Problem 1

Note that $K(t) /\langle f(t)\rangle$ is a field if and only if $\langle f(t)\rangle$ is a maximal ideal. Hence, it suffices to show that $f(t)$ is irreducible if and only if $\langle f(t)\rangle$ is a maximal ideal.

Suppose that $f(t)$ is irreducible and I is an ideal containing $\langle f(t)\rangle$. Since $K(t)$ is Euclidean, $K(t)$ is a principal ideal domain. It follows that there exists $g(t) \in K(t)$ such that $I=\langle g(t)\rangle$. As $\langle f(t)\rangle \subseteq\langle g(t)\rangle$, we have $g(t) \mid f(t)$. Since $f(t)$ is irreducible, either $g(t)$ or $\frac{f(t)}{g(t)}$ is a unit, hence either $I=K(t)$ or $I=\langle f(t)\rangle$. Thus, $\langle f(t)\rangle$ is a maximal ideal.

Conversely, if $f(t)$ is reducible, then there exist $g(t), h(t) \in K(t)$ such that neither $g(t)$ nor $h(t)$ is a unit. Then $\langle g(t)\rangle \neq K(t)$ is an ideal properly containing $\langle f(t)\rangle$, so $\langle f(t)\rangle$ is not a maximal ideal.

Problem 2

Suppose that \mathfrak{b} is a fractional ideal, i.e. there exist $\mathfrak{a} \in O_{K}$ and $c \in O_{K} \backslash\{0\}$ such that $\mathfrak{b}=c^{-1} \mathfrak{a}$. Then the condition (a) is clear. We also have (b) since $\mathfrak{b} O_{K}=c^{-1} \mathfrak{a} O_{K} \subseteq c^{-1} \mathfrak{a}=\mathfrak{b}$. The condition (c) also holds for $x=c$.

Conversely, suppose that \mathfrak{b} satisfies (a),(b), and (c). Let $x \in O_{K}$ be the element satisfying $x \mathfrak{b} \subseteq O_{K}$ as in (c). Then (a) and (b) imply that $\mathfrak{a}=x \mathfrak{b}$ is an ideal of O_{K}. Thus $\mathfrak{b}=x^{-1} \mathfrak{a}$ is a fractional ideal.

Problem 3

$\left\{1, \frac{1+\sqrt{-3}}{2}\right\}$ is an integral basis of K, so $x+y \sqrt{-3}$ with $x, y \in \mathbb{Q}$ is contained in O_{K} if and only if $x+y, x-y \in \mathbb{Z}$. It follows that

$$
\begin{aligned}
\mathfrak{a}^{-1} & =\left\{\alpha \in K: \alpha \mathfrak{a} \subseteq O_{K}\right\} \\
& =\left\{x+y \sqrt{-3}: x, y \in \mathbb{Q},(x+y \sqrt{-3})\left\langle 2, \frac{1-\sqrt{-3}}{2}\right\rangle \subseteq O_{K}\right\} \\
& =\left\{x+y \sqrt{-3}: x, y \in \mathbb{Q}, 2 x+2 y \sqrt{-3}, \frac{x+3 y}{2}+\frac{y-x}{2} \sqrt{-3} \in O_{K}\right\} \\
& =\{x+y \sqrt{-3}: 2 x+2 y, 2 x-2 y, 2 y, x+y \in \mathbb{Z}\} \\
& =\{x+y \sqrt{-3}: 2 y, x-y \in \mathbb{Z}\}=O_{K} .
\end{aligned}
$$

Problem 4

(a) $\{1, \sqrt{5}\}$ is an integral basis of $\mathbb{Q}(\sqrt{5})$. Let M_{1} be the base-change matrix from $\{1, \sqrt{5}\}$ to $\{2,1+\sqrt{5}\}$, and M_{2} be the base-change matrix from $\{1, \sqrt{5}\}$ to $\{3,1-\sqrt{5}\}$. Then we have

$$
M_{1}=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right), \quad M_{2}=\left(\begin{array}{cc}
3 & 0 \\
1 & -1
\end{array}\right) .
$$

Since $O_{K} / \mathfrak{p}_{1} \cong \mathbb{Z}^{2} /\left(M_{1} \mathbb{Z}^{2}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$ and $O_{K} / \mathfrak{p}_{2} \cong \mathbb{Z}^{2} /\left(M_{2} \mathbb{Z}^{2}\right) \cong \mathbb{Z} / 3 \mathbb{Z}$ are fields, \mathfrak{p}_{1} and \mathfrak{p}_{2} are maximal ideals. By Proposition 4.65 we also have

$$
\begin{array}{r}
\left|O_{K} / \mathfrak{p}_{1}\right|=N\left(\mathfrak{p}_{1}\right)=\left|\operatorname{det}\left(M_{1}\right)\right|=2, \\
\left|O_{K} / \mathfrak{p}_{2}\right|=N\left(\mathfrak{p}_{2}\right)=\left|\operatorname{det}\left(M_{2}\right)\right|=3 .
\end{array}
$$

(b) Suppose that \mathfrak{p}_{1} is a principal ideal, i.e. there exists $x \in O_{K} \backslash O_{K}^{\times}$such that $\langle x\rangle=\langle 2,1+\sqrt{-5}\rangle$. Then $x \mid 2$ and $x \mid 1+\sqrt{-5}$, hence $N(x) \mid N(2)=4$ and $N(x) \mid N(1+\sqrt{-5})=6$. It follows that $N(x)=2$. However, there is no $x \in O_{K}$ satisfying $N(x)=2$ as there is no integral solution of $a^{2}+5 b^{2}=2$. Thus, \mathfrak{p}_{1} is not a principal ideal. The same argument still works for \mathfrak{p}_{2}.
(c) Note that

$$
\begin{aligned}
\mathfrak{p}_{1} \mathfrak{p}_{2} & =\langle 2 \cdot 3,2 \cdot(1-\sqrt{-5}),(1+\sqrt{-5}) \cdot 3,(1+\sqrt{-5})(1-\sqrt{-5}))\rangle \\
& =\langle 6,2(1-\sqrt{-5}), 3(1+\sqrt{-5}) .\rangle
\end{aligned}
$$

As $6=(1+\sqrt{-5})(1-\sqrt{-5})$ and $3(1+\sqrt{-5})=(-2+\sqrt{-5})(1-\sqrt{-5})$, we have $\mathfrak{p}_{1} \mathfrak{p}_{2} \subseteq\langle 1-\sqrt{-5}\rangle$. On the other hand, $1-\sqrt{-5} \in \mathfrak{p}_{1} \mathfrak{p}_{2}$ since $1-\sqrt{-5}=6-(2-2 \sqrt{-5})-(3+3 \sqrt{-5})$. Thus, $\mathfrak{p}_{1} \mathfrak{p}_{2}$ is principal and $1-\sqrt{-5}$ is a generator.

Problem 5

Recall that $\mathbb{Z}[i]$ is a Euclidean domain (see the proof of Theorem 4.8), hence $\mathbb{Z}[i]$ is a principal ideal domain. It follows that all fractional ideals in $\mathbb{Z}[i]$ must be in a form of $\frac{b}{a} \mathbb{Z}[i]$, where $a, b \in \mathbb{Z}[i], a \neq 0$, and $\operatorname{gcd}(a, b)=1$.

Problem 6

Let $e_{1}=1, e_{2}, \cdots, e_{n}$ be a \mathbb{Z}-basis of O_{K}, and f_{1}, \cdots, f_{n} be a \mathbb{Z}-basis of \mathfrak{a}, where n is the degree of K. Let M be the integral base-change matrix from e_{1}, \cdots, e_{n} to f_{1}, \cdots, f_{n}. Note that there exists integral matrix X such that
$X M=M X=\operatorname{det}(M) \operatorname{Id}_{n}$. It follows that X is the integral base-change matrix from f_{1}, \cdots, f_{n} to $\operatorname{det}(M) e_{1}, \cdots, \operatorname{det}(M) e_{n}$. In particular, $N(\mathfrak{a})=$ $\operatorname{det}(M)=\operatorname{det}(M) e_{1}$ can be expressed by an integral linear combination of f_{1}, \cdots, f_{n}, hence $N(\mathfrak{a}) \in \mathfrak{a}$.

