Problem sheet 5 Solutions

Problem 1

(a)

$$\begin{aligned} \mathfrak{p}^2 &= \langle 2^2, 2(1+\sqrt{-5}), (1+\sqrt{-5})^2 \rangle \\ &= \langle 4, 2+2\sqrt{-5}, -4+2\sqrt{-5} \rangle = \langle 2 \rangle, \end{aligned}$$

$$\mathfrak{pq} = \langle 2 \cdot 3, 2(1+\sqrt{-5}), 3(1+\sqrt{-5}), (1+\sqrt{-5})^2 \rangle = \langle 1+\sqrt{-5} \rangle.$$

(b) Observe that $N(\mathfrak{p})^2 = N(\mathfrak{p}^2) = N(2) = 4$ and $N(\mathfrak{p})N(\mathfrak{q}) = N(\mathfrak{p}\mathfrak{q}) = N(1 + \sqrt{-5}) = 6$. It follows that $N(\mathfrak{p}) = 2$ and $N(\mathfrak{q}) = 3$, hence \mathfrak{p} and \mathfrak{q} are maximal.

(c) We have

$$\begin{aligned} \mathfrak{p} &= \{2(a+b\sqrt{-5}) + (1+\sqrt{-5})(c+d\sqrt{-5}) : a, b, c, d \in \mathbb{Z}\} \\ &= \{2(a-b-3d) + (1+\sqrt{-5})(2b+c+d) : a, b, c, d \in \mathbb{Z}\} \\ &= \{2x + (1+\sqrt{-5})y : x, y \in \mathbb{Z}\}, \end{aligned}$$

$$\begin{split} \mathfrak{q} &= \{3(a+b\sqrt{-5}) + (1+\sqrt{-5})(c+d\sqrt{-5}) : a,b,c,d \in \mathbb{Z}\} \\ &= \{3(a-b-2d) + (1+\sqrt{-5})(3b+c+d) : a,b,c,d \in \mathbb{Z}\} \\ &= \{3x + (1+\sqrt{-5})y : x, y \in \mathbb{Z}\}. \end{split}$$

Hence, $\{2, 1 + \sqrt{-5}\}$ is a \mathbb{Z} -basis of $\langle 2, 1 + \sqrt{-5} \rangle$, and $\{3, 1 + \sqrt{-5}\}$ is a \mathbb{Z} -basis of $\langle 3, 1 + \sqrt{-5} \rangle$.

Problem 2

(a) Since $N(\mathfrak{a})|N(6) = 36 = 2^2 3^2$, we shall factorize $\langle 2 \rangle$ and $\langle 3 \rangle$ into maximal ideals. The minimal polynomial of $\mathbb{Z}[\sqrt{-5}]$ is $x^2 + 5$. We factorize the minimal polynomial modulo 2 and 3:

$$x^{2} + 5 \equiv (x+1)^{2} \pmod{2}, \quad x^{2} + 5 \equiv (x+1)(x-1) \pmod{3}.$$

Applying Dedekind's criterion, we can factorize $\langle 2 \rangle$ and $\langle 3 \rangle$ as follows:

$$\begin{array}{ll} \langle 2 \rangle = \mathfrak{p}_2^2, & \mathfrak{p}_2 = \langle 2, 1 + \sqrt{-5} \rangle, \\ \langle 3 \rangle = \mathfrak{p}_3 \mathfrak{p}_3', & \mathfrak{p}_3 = \langle 3, 1 + \sqrt{-5} \rangle, \mathfrak{p}_3' = \langle 3, 1 - \sqrt{-5} \rangle. \end{array}$$

Note that $N(\mathfrak{p}_2) = 2$ and $N(\mathfrak{p}_3) = N(\mathfrak{p}'_3) = 3$. We also observe that neither \mathfrak{p}_3^2 nor \mathfrak{p}'_3^2 does not contain 6. Hence, $\mathfrak{p}_2, \mathfrak{p}_3, \mathfrak{p}'_3, \mathfrak{p}_2^2 = \langle 2 \rangle, \mathfrak{p}_3 \mathfrak{p}'_3 = \langle 3 \rangle, \mathfrak{p}_2 \mathfrak{p}_3 = \langle 1 + \sqrt{-5} \rangle, \mathfrak{p}_2 \mathfrak{p}'_3 = \langle 1 - \sqrt{-5} \rangle, \mathfrak{p}_2^2 \mathfrak{p}_3 = \langle 6, 2 + 2\sqrt{-5} \rangle, \mathfrak{p}_2^2 \mathfrak{p}'_3 = \langle 6, 2 - 2\sqrt{-5} \rangle, \mathfrak{p}_2 \mathfrak{p}_3 \mathfrak{p}'_3 = \langle 6, 3 + 3\sqrt{-5} \rangle, \mathfrak{p}_2^2 \mathfrak{p}_3 \mathfrak{p}'_3 = \langle 6 \rangle$ are all the ideals containing 6.

(b) As $18 = 2 \cdot 3^2$, we factorize $\langle 2 \rangle$ and $\langle 3 \rangle$ into maximal ideals. The minimal polynomial of $\mathbb{Z}[\sqrt{5}]$ is $x^2 - 5$. We first factorize the minimal polynomial modulo 2 and 3:

$$x^{2} - 5 \equiv (x + 1)^{2} \pmod{2}, \quad x^{2} - 5 \equiv x^{2} + 1 \pmod{3}.$$

Applying Dedekind's criterion, we can factorize $\langle 2 \rangle$ and $\langle 3 \rangle$ as follows:

$$\begin{array}{ll} \langle 2 \rangle = \mathfrak{p}_2^2, & \mathfrak{p}_2 = \langle 2, 1 + \sqrt{5} \rangle, \\ \langle 3 \rangle = \mathfrak{p}_3, & \mathfrak{p}_3 = \langle 3, (\sqrt{5})^2 + 1 \rangle = \langle 3 \rangle. \end{array}$$

Note that $N(\mathfrak{p}_2) = 2$ and $N(\mathfrak{p}_3) = 3^2$. It follows that the unique ideal in $\mathbb{Z}[\sqrt{5}]$ with norm 18 is $\mathfrak{p}_2\mathfrak{p}_3$.

(c) Recall that $\{1, \alpha = \frac{1+\sqrt{-3}}{2}\}$ is an integral basis of L. The minimal polynomial of α is $x^2 - x + 1$. As $12 = 2^2 \cdot 3$, we factorize $\langle 2 \rangle$ and $\langle 3 \rangle$ into maximal ideals:

$$\begin{aligned} \langle 2 \rangle = \mathfrak{p}_2, \qquad \mathfrak{p}_2 = \langle 2 \rangle, \\ \langle 3 \rangle = \mathfrak{p}_3^2, \qquad \mathfrak{p}_3 = \langle \sqrt{-3} \rangle. \end{aligned}$$

We have $N(\mathfrak{p}_2) = 2^2$ and $N(\mathfrak{p}_3) = 3$. Hence, $\mathfrak{p}_2\mathfrak{p}_3$ is the unique ideal in O_L of norm 12.

Problem 3

Since $N(\mathfrak{a})|N(5-2\sqrt{-5}) = 45 = 3^2 \cdot 5$, we shall factorize $\langle 3 \rangle$ and $\langle 5 \rangle$ into maximal ideals. We factorize the minimal polynomial $x^2 + 5$ modulo 2 and 3:

$$x^{2} + 5 \equiv (x+1)(x-1) \pmod{3}, x^{2} + 5 \equiv x^{2} \pmod{5}.$$

Applying Dedekind's criterion, we can factorize $\langle 3 \rangle$ and $\langle 5 \rangle$ as follows:

$$\begin{array}{ll} \langle 3 \rangle = \mathfrak{p}_3 \mathfrak{p}_3', \qquad \mathfrak{p}_3 = \langle 3, 1 + \sqrt{-5} \rangle, \mathfrak{p}_3' = \langle 3, 1 - \sqrt{-5} \rangle, \\ \langle 5 \rangle = \mathfrak{p}_5^2, \qquad \mathfrak{p}_5 = \langle \sqrt{-5} \rangle. \end{array}$$

By straightforward calculations, one can check that $5 - 2\sqrt{-5} \in \mathfrak{p}'_3$ but $5 - 2\sqrt{-5} \notin \mathfrak{p}_3$. Thus, we have factorization $\mathfrak{a} = \mathfrak{p}'_3^2 \mathfrak{p}_5$.

Problem 4

As $24 = 2^3 \cdot 3$, we factorize $\langle 2 \rangle$ and $\langle 3 \rangle$ into maximal ideals. The minimal polynomial of $\mathbb{Z}[\sqrt{6}]$ is $x^2 - 6$. We first factorize the minimal polynomial modulo 2 and 3:

$$x^2 - 6 \equiv x^2 \pmod{2}, \quad x^2 - 6 \equiv x^2 \pmod{3}.$$

Applying Dedekind's criterion, we can factorize $\langle 2 \rangle$ and $\langle 3 \rangle$ as follows:

$$\begin{aligned} \langle 2 \rangle = \mathfrak{p}_2^2, \qquad \mathfrak{p}_2 = \langle 2, \sqrt{6} \rangle, \\ \langle 3 \rangle = \mathfrak{p}_3^2, \qquad \mathfrak{p}_3 = \langle 3, \sqrt{6} \rangle. \end{aligned}$$

Note that $N(\mathfrak{p}_2) = 2$ and $N(\mathfrak{p}_3) = 3$. It follows that the unique ideal in $\mathbb{Z}[\sqrt{6}]$ with norm 24 is $\mathfrak{p}_3^3\mathfrak{p}_3$.

Problem 5

(a) By Corollary 2.42, we have

$$\Delta[1, \alpha, \alpha^2] = -27 \cdot 2^2 - 4 \cdot 2^3 = -140 = -2^2 \cdot 5 \cdot 7.$$

Note that 2 is the largest integer N such that $N^2|\Delta[1, \alpha, \alpha^2]$. On the other hand, observe that the minimal polynomial $x^3 + 2x + 2$ satisfies Eisenstein's criterion for p = 2. By Proposition 3.30, any $\theta = \frac{1}{2} \sum_{i=0}^{2} a_i \alpha^i$ for $a_i \in \{0, 1\}$ not all 0 is not an algebraic integer. It follows that $\{1, \alpha, \alpha^2\}$ is an integral basis of K.

(b) We first factorize the minimal polynomial moudlo 5 and 7:

$$x^{3}+2x+2 \equiv (x-1)^{2}(x+2) \pmod{5}, \quad x^{3}+2x+2 \equiv (x-2)^{2}(x-3) \pmod{7}.$$

Applying Dedekind's criterion, we can factorize $\langle 5 \rangle$ and $\langle 7 \rangle$ as follows:

$$\begin{array}{ll} \langle 5 \rangle = \mathfrak{p}_5^2 \mathfrak{p}_5', & \mathfrak{p}_5 = \langle 5, \alpha - 1 \rangle, \mathfrak{p}_5' = \langle 5, \alpha + 2 \rangle \\ \langle 7 \rangle = \mathfrak{p}_7^2 \mathfrak{p}_7', & \mathfrak{p}_7 = \langle 7, \alpha - 2 \rangle, \mathfrak{p}_7' = \langle 7, \alpha - 3 \rangle. \end{array}$$

(c) Let α, β , and γ be the conjugates of α . By Vieta's formula, we have $\alpha + \beta + \gamma = 0$, $\alpha\beta + \beta\gamma + \gamma\alpha = 2$, and $\alpha\beta\gamma = -2$. Hence,

$$N(3 - \alpha) = (3 - \alpha)(3 - \beta)(3 - \gamma) = 3^3 - 3^2 \cdot 0 + 3 \cdot 2 + 2 = 35 = 5 \cdot 7.$$

One can check that $3 - \alpha \in \mathfrak{p}'_5$ but $3 - \alpha \notin \mathfrak{p}_5$, and $3 - \alpha \in \mathfrak{p}'_7$ but $3 - \alpha \notin \mathfrak{p}_7$. It follows that $\langle 3 - \alpha \rangle = \mathfrak{p}'_5 \mathfrak{p}'_7$. (d) Similarly, we calculate

$$N(5-\alpha) = (5-\alpha)(5-\beta)(5-\gamma) = 5^3 - 5^2 \cdot 0 + 5 \cdot 2 + 2 = 137.$$

Since 137 is prime, $5 - \alpha$ is irreducible in O_K .