Problem sheet 5 Solutions

Problem 1

(a)

$$
\begin{aligned}
& \mathfrak{p}^{2}=\left\langle 2^{2}, 2(1+\sqrt{-5}),(1+\sqrt{-5})^{2}\right\rangle \\
&=\langle 4,2+2 \sqrt{-5},-4+2 \sqrt{-5}\rangle=\langle 2\rangle, \\
& \mathfrak{p q}=\left\langle 2 \cdot 3,2(1+\sqrt{-5}), 3(1+\sqrt{-5}),(1+\sqrt{-5})^{2}\right\rangle=\langle 1+\sqrt{-5}\rangle .
\end{aligned}
$$

(b) Observe that $N(\mathfrak{p})^{2}=N\left(\mathfrak{p}^{2}\right)=N(2)=4$ and $N(\mathfrak{p}) N(\mathfrak{q})=N(\mathfrak{p q})=$ $N(1+\sqrt{-5})=6$. It follows that $N(\mathfrak{p})=2$ and $N(\mathfrak{q})=3$, hence \mathfrak{p} and \mathfrak{q} are maximal.
(c) We have

$$
\begin{aligned}
\mathfrak{p} & =\{2(a+b \sqrt{-5})+(1+\sqrt{-5})(c+d \sqrt{-5}): a, b, c, d \in \mathbb{Z}\} \\
& =\{2(a-b-3 d)+(1+\sqrt{-5})(2 b+c+d): a, b, c, d \in \mathbb{Z}\} \\
& =\{2 x+(1+\sqrt{-5}) y: x, y \in \mathbb{Z}\}, \\
\mathfrak{q} & =\{3(a+b \sqrt{-5})+(1+\sqrt{-5})(c+d \sqrt{-5}): a, b, c, d \in \mathbb{Z}\} \\
& =\{3(a-b-2 d)+(1+\sqrt{-5})(3 b+c+d): a, b, c, d \in \mathbb{Z}\} \\
& =\{3 x+(1+\sqrt{-5}) y: x, y \in \mathbb{Z}\} .
\end{aligned}
$$

Hence, $\{2,1+\sqrt{-5}\}$ is a \mathbb{Z}-basis of $\langle 2,1+\sqrt{-5}\rangle$, and $\{3,1+\sqrt{-5}\}$ is a \mathbb{Z}-basis of $\langle 3,1+\sqrt{-5}\rangle$.

Problem 2

(a) Since $N(\mathfrak{a}) \mid N(6)=36=2^{2} 3^{2}$, we shall factorize $\langle 2\rangle$ and $\langle 3\rangle$ into maximal ideals. The minimal polynomial of $\mathbb{Z}[\sqrt{-5}]$ is $x^{2}+5$. We factorize the minimal polynomial modulo 2 and 3:

$$
x^{2}+5 \equiv(x+1)^{2}(\bmod 2), \quad x^{2}+5 \equiv(x+1)(x-1)(\bmod 3) .
$$

Applying Dedekind's criterion, we can factorize $\langle 2\rangle$ and $\langle 3\rangle$ as follows:

$$
\begin{array}{ll}
\langle 2\rangle=\mathfrak{p}_{2}^{2}, & \mathfrak{p}_{2}=\langle 2,1+\sqrt{-5}\rangle, \\
\langle 3\rangle=\mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}, & \mathfrak{p}_{3}=\langle 3,1+\sqrt{-5}\rangle, \mathfrak{p}_{3}^{\prime}=\langle 3,1-\sqrt{-5}\rangle .
\end{array}
$$

Note that $N\left(\mathfrak{p}_{2}\right)=2$ and $N\left(\mathfrak{p}_{3}\right)=N\left(\mathfrak{p}_{3}^{\prime}\right)=3$. We also observe that neither \mathfrak{p}_{3}^{2} nor $\mathfrak{p}_{3}^{\prime 2}$ does not contain 6 . Hence, $\mathfrak{p}_{2}, \mathfrak{p}_{3}, \mathfrak{p}_{3}^{\prime}, \mathfrak{p}_{2}^{2}=\langle 2\rangle, \mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}=$ $\langle 3\rangle, \mathfrak{p}_{2} \mathfrak{p}_{3}=\langle 1+\sqrt{-5}\rangle, \mathfrak{p}_{2} \mathfrak{p}_{3}^{\prime}=\langle 1-\sqrt{-5}\rangle, \mathfrak{p}_{2}^{2} \mathfrak{p}_{3}=\langle 6,2+2 \sqrt{-5}\rangle, \mathfrak{p}_{2}^{2} \mathfrak{p}_{3}^{\prime}=$ $\langle 6,2-2 \sqrt{-5}\rangle, \mathfrak{p}_{2} \mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}=\langle 6,3+3 \sqrt{-5}\rangle, \mathfrak{p}_{2}^{2} \mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}=\langle 6\rangle$ are all the ideals containing 6 .
(b) As $18=2 \cdot 3^{2}$, we factorize $\langle 2\rangle$ and $\langle 3\rangle$ into maximal ideals. The minimal polynomial of $\mathbb{Z}[\sqrt{5}]$ is $x^{2}-5$. We first factorize the minimal polynomial modulo 2 and 3:

$$
x^{2}-5 \equiv(x+1)^{2}(\bmod 2), \quad x^{2}-5 \equiv x^{2}+1(\bmod 3) .
$$

Applying Dedekind's criterion, we can factorize $\langle 2\rangle$ and $\langle 3\rangle$ as follows:

$$
\begin{array}{lrl}
\langle 2\rangle=\mathfrak{p}_{2}^{2}, & \mathfrak{p}_{2}=\langle 2,1+\sqrt{5}\rangle, \\
\langle 3\rangle & =\mathfrak{p}_{3}, & \mathfrak{p}_{3}=\left\langle 3,(\sqrt{5})^{2}+1\right\rangle=\langle 3\rangle .
\end{array}
$$

Note that $N\left(\mathfrak{p}_{2}\right)=2$ and $N\left(\mathfrak{p}_{3}\right)=3^{2}$. It follows that the unique ideal in $\mathbb{Z}[\sqrt{5}]$ with norm 18 is $\mathfrak{p}_{2} \mathfrak{p}_{3}$.
(c) Recall that $\left\{1, \alpha=\frac{1+\sqrt{-3}}{2}\right\}$ is an integral basis of L. The minimal polynomial of α is $x^{2}-x+1$. As $12=2^{2} \cdot 3$, we factorize $\langle 2\rangle$ and $\langle 3\rangle$ into maximal ideals:

$$
\begin{array}{lc}
\langle 2\rangle=\mathfrak{p}_{2}, & \mathfrak{p}_{2}=\langle 2\rangle, \\
\langle 3\rangle=\mathfrak{p}_{3}^{2}, & \mathfrak{p}_{3}=\langle\sqrt{-3}\rangle .
\end{array}
$$

We have $N\left(\mathfrak{p}_{2}\right)=2^{2}$ and $N\left(\mathfrak{p}_{3}\right)=3$. Hence, $\mathfrak{p}_{2} \mathfrak{p}_{3}$ is the unique ideal in O_{L} of norm 12 .

Problem 3

Since $N(\mathfrak{a}) \mid N(5-2 \sqrt{-5})=45=3^{2} \cdot 5$, we shall factorize $\langle 3\rangle$ and $\langle 5\rangle$ into maximal ideals. We factorize the minimal polynomial $x^{2}+5$ modulo 2 and 3 :

$$
x^{2}+5 \equiv(x+1)(x-1)(\bmod 3), x^{2}+5 \equiv x^{2}(\bmod 5) .
$$

Applying Dedekind's criterion, we can factorize $\langle 3\rangle$ and $\langle 5\rangle$ as follows:

$$
\begin{array}{ll}
\langle 3\rangle=\mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}, & \mathfrak{p}_{3}=\langle 3,1+\sqrt{-5}\rangle, \mathfrak{p}_{3}^{\prime}=\langle 3,1-\sqrt{-5}\rangle, \\
\langle 5\rangle=\mathfrak{p}_{5}^{2}, & \mathfrak{p}_{5}=\langle\sqrt{-5}\rangle .
\end{array}
$$

By straightforward calculations, one can check that $5-2 \sqrt{-5} \in \mathfrak{p}_{3}^{\prime}$ but $5-2 \sqrt{-5} \notin \mathfrak{p}_{3}$. Thus, we have factorization $\mathfrak{a}=\mathfrak{p}_{3}^{\prime 2} \mathfrak{p}_{5}$.

Problem 4

As $24=2^{3} \cdot 3$, we factorize $\langle 2\rangle$ and $\langle 3\rangle$ into maximal ideals. The minimal polynomial of $\mathbb{Z}[\sqrt{6}]$ is $x^{2}-6$. We first factorize the minimal polynomial modulo 2 and 3 :

$$
x^{2}-6 \equiv x^{2}(\bmod 2), \quad x^{2}-6 \equiv x^{2}(\bmod 3) .
$$

Applying Dedekind's criterion, we can factorize $\langle 2\rangle$ and $\langle 3\rangle$ as follows:

$$
\begin{array}{ll}
\langle 2\rangle=\mathfrak{p}_{2}^{2}, & \mathfrak{p}_{2}=\langle 2, \sqrt{6}\rangle, \\
\langle 3\rangle=\mathfrak{p}_{3}^{2}, & \mathfrak{p}_{3}=\langle 3, \sqrt{6}\rangle .
\end{array}
$$

Note that $N\left(\mathfrak{p}_{2}\right)=2$ and $N\left(\mathfrak{p}_{3}\right)=3$. It follows that the unique ideal in $\mathbb{Z}[\sqrt{6}]$ with norm 24 is $\mathfrak{p}_{2}^{3} \mathfrak{p}_{3}$.

Problem 5

(a) By Corollary 2.42, we have

$$
\Delta\left[1, \alpha, \alpha^{2}\right]=-27 \cdot 2^{2}-4 \cdot 2^{3}=-140=-2^{2} \cdot 5 \cdot 7
$$

Note that 2 is the largest integer N such that $N^{2} \mid \Delta\left[1, \alpha, \alpha^{2}\right]$. On the other hand, observe that the minimal polynomial $x^{3}+2 x+2$ satisfies Eisenstein's criterion for $p=2$. By Proposition 3.30, any $\theta=\frac{1}{2} \sum_{i=0}^{2} a_{i} \alpha^{i}$ for $a_{i} \in\{0,1\}$ not all 0 is not an algebraic integer. It follows that $\left\{1, \alpha, \alpha^{2}\right\}$ is an integral basis of K.
(b) We first factorize the minimal polynomial moudlo 5 and 7 :

$$
x^{3}+2 x+2 \equiv(x-1)^{2}(x+2)(\bmod 5), \quad x^{3}+2 x+2 \equiv(x-2)^{2}(x-3)(\bmod 7) .
$$

Applying Dedekind's criterion, we can factorize $\langle 5\rangle$ and $\langle 7\rangle$ as follows:

$$
\begin{array}{ll}
\langle 5\rangle=\mathfrak{p}_{5}^{2} \mathfrak{p}_{5}^{\prime}, & \mathfrak{p}_{5}=\langle 5, \alpha-1\rangle, \mathfrak{p}_{5}^{\prime}=\langle 5, \alpha+2\rangle \\
\langle 7\rangle=\mathfrak{p}_{7}^{2} \mathfrak{p}_{7}^{\prime}, & \mathfrak{p}_{7}=\langle 7, \alpha-2\rangle, \mathfrak{p}_{7}^{\prime}=\langle 7, \alpha-3\rangle .
\end{array}
$$

(c) Let α, β, and γ be the conjugates of α. By Vieta's formula, we have $\alpha+\beta+\gamma=0, \alpha \beta+\beta \gamma+\gamma \alpha=2$, and $\alpha \beta \gamma=-2$. Hence,

$$
N(3-\alpha)=(3-\alpha)(3-\beta)(3-\gamma)=3^{3}-3^{2} \cdot 0+3 \cdot 2+2=35=5 \cdot 7 .
$$

One can check that $3-\alpha \in \mathfrak{p}_{5}^{\prime}$ but $3-\alpha \notin \mathfrak{p}_{5}$, and $3-\alpha \in \mathfrak{p}_{7}^{\prime}$ but $3-\alpha \notin \mathfrak{p}_{7}$. It follows that $\langle 3-\alpha\rangle=\mathfrak{p}_{5}^{\prime} \mathfrak{p}_{7}^{\prime}$.
(d) Similarly, we calculate

$$
N(5-\alpha)=(5-\alpha)(5-\beta)(5-\gamma)=5^{3}-5^{2} \cdot 0+5 \cdot 2+2=137 .
$$

Since 137 is prime, $5-\alpha$ is irreducible in O_{K}.

