## Problem sheet 6 Solutions

## Problem 1

(a) It follows from Euler's lemma $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}(\bmod p)$.
(b) By (a), -1 is quadratic nonresidue if and only if $(-1)^{\frac{p-1}{2}} \equiv-1(\bmod p)$, i.e. $p \equiv 1(\bmod 4)$.

## Problem 2

By the law of quadratic reciprocity, we have

$$
\left(\frac{3}{p}\right)\left(\frac{p}{3}\right)=(-1)^{\frac{p-1}{2}} .
$$

Note that $\left(\frac{p}{3}\right)=1$ if $p \equiv 1(\bmod 3)$ and $\left(\frac{p}{3}\right)=-1$ if $p \equiv-1(\bmod 3)$. It follows that $\left(\frac{3}{p}\right)=1$ if and only if $p \equiv \pm 1(\bmod 12)$.

## Problem 3

$$
\begin{aligned}
&\left(\frac{107}{1009}\right)=(-1)^{\frac{(107-1)(1009-1)}{4}}\left(\frac{1009}{107}\right)=\left(\frac{46}{107}\right)=\left(\frac{2}{107}\right)\left(\frac{23}{107}\right) \\
&=(-1)^{\frac{107^{2}-1}{8}}(-1)^{\frac{(23-1)(107-1)}{4}}\left(\frac{107}{23}\right)=\left(\frac{-8}{23}\right)=-\left(\frac{2}{23}\right)^{3} \\
&=-(-1)^{\frac{23^{2}-1}{8}}=-1, \\
&\left(\frac{21}{101}\right)=\left(\frac{3}{101}\right)\left(\frac{7}{101}\right) \\
&=(-1)^{\frac{(3-1)(101-1)}{4}}\left(\frac{101}{3}\right)(-1)^{\frac{(7-1)(101-1)}{4}}\left(\frac{101}{7}\right)=\left(\frac{2}{3}\right)\left(\frac{3}{7}\right) \\
&=(-1) \cdot(-1)^{\frac{(3-1)(7-1)}{4}}\left(\frac{7}{3}\right)=\left(\frac{1}{3}\right)=1, \\
&\left(\frac{377}{233}\right)=\left(\frac{144}{233}\right)=\left(\frac{12}{233}\right)^{2}=1, \\
&\left(\frac{-104}{131}\right)=\left(\frac{27}{131}\right)=\left(\frac{3}{131}\right)^{3}=\left(\frac{3}{131}\right) \\
&=(-1)^{\frac{(3-1)(131-1)}{4}}\left(\frac{131}{3}\right)=-\left(\frac{2}{3}\right)=-1 .
\end{aligned}
$$

## Problem 4

Observe that $2^{2 k}-1=\left(2^{k}+1\right)\left(2^{k}-1\right)$ and $2^{k}+1,2^{k}-1>1$ for $k>1$. It follows that if $p=2^{n}-1$ is a prime, then $n$ is odd. We also note that $2^{n}-1 \equiv 1(\bmod 3)$ for $n$ odd and $2^{n}-1 \equiv 3(\bmod 4)$ for $n>2$. Hence by the law of quadratic reciprocity, we have

$$
\left(\frac{3}{p}\right)=(-1)^{\frac{(3-1)(p-1)}{4}}\left(\frac{p}{3}\right)=(-1)\left(\frac{1}{3}\right)=-1 .
$$

## Problem 5

It suffices to show that $\left(\frac{a}{p}\right)\left(\frac{-a}{p}\right)=-1$. Since $\left(\frac{-1}{p}\right)=-1$ for $p \equiv$ $3(\bmod 4)$, we have

$$
\left(\frac{a}{p}\right)\left(\frac{-a}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{a}{p}\right)^{2}=-1 .
$$

## Problem 6

Note that the cardinality of $\left\{1^{2}, 2^{2} \cdots,(p-1)^{2}\right\}$ is $\frac{p-1}{2}$. It implies that the number of quadratic residues and non-residues are both $\frac{p-1}{2}$, hence

$$
\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=\frac{p-1}{2} \cdot 1+\frac{p-1}{2} \cdot(-1)=0 .
$$

