Problem sheet 6 Solutions

Problem 1

(a) It follows from Euler’s lemma (%) =ad'T (mod p).

(b) By (a), —1 is quadratic nonresidue if and only if (
ie. p=1(mod 4).

Problem 2

By the law of quadratic reciprocity, we have
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Note that (§) = 1if p=1 (mod 3) and (§) = =1 if p = —1 (mod 3). It

follows that ( ) = 1 if and only if p = 41 (mod 12).
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Problem 3
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Problem 4

Observe that 22F — 1 = (28 4-1)(2F — 1) and 2 + 1,28 — 1 > 1 for k > 1.
It follows that if p = 2" — 1 is a prime, then n is odd. We also note that
2" —1 =1 (mod 3) for n odd and 2" — 1 = 3 (mod 4) for n > 2. Hence by
the law of quadratic reciprocity, we have
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Problem 5

It suffices to show that (%) (_“) = —1. Since <_1> = —1 for p =
3 (mod 4), we have

Problem 6

Note that the cardinality of {12,22-.. (p —1)%} is %. It implies that the
number of quadratic residues and non-residues are both %, hence



