Problem sheet 7 Solutions

Problem 1

(a) By linearlity one can easily check that (a + a', b + b'), $(ka, kb) \in \Lambda$ for any $(a, b), (a', b') \in \Lambda$ and $k \in \mathbb{Z}$. It shows that Λ is a subgroup of \mathbb{Z}^2 . We also observe that Λ is a lattice with a basis (1, u), (0, p). Then the index of Λ in \mathbb{Z}^2 is computed by

$$\left|\det \begin{pmatrix} 1 & u \\ 0 & p \end{pmatrix}\right| = p$$

(b) Similar to (a), Λ is a sublattice of \mathbb{Z}^4 by the linearlity of the equations. Any element of Λ can be written in a form of $(a, b, ua + vb + pc', -va + ub + pd') \in \mathbb{Z}^4$, where $a, b, c', d' \in \mathbb{Z}$. Hence, (1, 0, u, -v), (0, 1, v, u), (0, 0, p, 0), (0, 0, 0, p) is a basis of Λ . It follows that the index of Λ in \mathbb{Z}^2 is

$$\left| \det \begin{pmatrix} 1 & 0 & u & -v \\ 0 & 1 & v & u \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix} \right| = p^2.$$

Problem 2

Let $I_1 = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$ be the factorization of I_1 , where $\mathfrak{p}_1, \cdots, \mathfrak{p}_r$ are distinct maximal ideals and $e_1, \cdots, e_r \geq 1$. We also factorize $I_2 = \mathfrak{q}_1^{f_1} \cdots \mathfrak{q}_s^{f_s}$, where $\mathfrak{q}_1, \cdots, \mathfrak{q}_s$ are distinct maximal ideals and $f_1, \cdots, f_s \geq 1$. Since I_1 and I_2 are coprime, the maximal ideals $\mathfrak{p}_1, \cdots, \mathfrak{p}_r, \mathfrak{q}_1, \cdots, \mathfrak{q}_s$ are all distinct. It follows that $J^k = I_1 I_2$ is factorized as $J^k = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r} \mathfrak{q}_1^{f_1} \cdots \mathfrak{q}_s^{f_s}$, hence $e_1, \cdots, e_r, f_1, \cdots, f_s$ are divided by k. Let $e_i = ke'_i$ and $f_j = kf'_j$ for $1 \leq i \leq r$ and $1 \leq j \leq s$. Then we have $I_1 = J_1^k$ and $I_2 = J_2^k$ for $J_1 = \mathfrak{p}_1^{e'_1} \cdots \mathfrak{p}_r^{e'_r}$ and $J_2 = \mathfrak{q}_1^{f'_1} \cdots \mathfrak{q}_s^{f'_s}$.

Problem 3

(a) Let $K = \mathbb{Q}(\sqrt{3})$. Then d = 2, r = 1, and s = 0. Note that $1, \sqrt{3}$ is an integral basis of K, and $\Delta[1, \sqrt{3}] = 4 \cdot 3 = 12$. We calculate the Minkowski bound:

$$c = \frac{2!}{4}\sqrt{12} \approx 1.732$$

By Theorem 6.41, every ideal class contains an ideal with norm 1, i.e, h(K) = 1.

Let $K = \mathbb{Q}(\sqrt{-3})$. Then d = 2, r = 0, and s = 1. Note that $1, \tau$ is an integral basis of K, where $\tau = \frac{1+\sqrt{-3}}{2}$, and $\Delta[1, \tau] = 3$. We calculate the Minkowski bound:

$$c = \frac{4}{\pi} \frac{2!}{4} \sqrt{3} \approx 1.102.$$

By Theorem 6.41, every ideal class contains an ideal with norm 1, i.e, h(K) = 1.

(b) Let $K = \mathbb{Q}(\sqrt{-11})$. Then d = 2, r = 0, and s = 1. Note that $1, \tau$ is an integral basis of K, where $\tau = \frac{1+\sqrt{-11}}{2}$, and $\Delta[1, \tau] = 11$. We calculate the Minkowski bound:

$$c = \frac{4}{\pi} \frac{2!}{4} \sqrt{11} \approx 2.111.$$

By Theorem 6.41, every ideal class contains an ideal with norm ≤ 2 . Suppose now that \mathfrak{a} has norm 2. Then $\mathfrak{a}|\langle 2 \rangle$, so we shall factorize $\langle 2 \rangle$. Recall that τ is a root of the polynomial $f(t) = t^2 - t + 3$. Applying Dedekind's criterion (Theorem 4.73), $\langle 2 \rangle$ is prime as $f(t) \equiv t^2 + t + 1 \pmod{2}$ is irreducible. Moreover, we have $N(\langle 2 \rangle) = 2^2$, so there are no ideals of norm 2. Thus h(K) = 1.

(c) Let $K = \mathbb{Q}(\sqrt{-13})$. Then d = 2, r = 0, and s = 1. Note that $1, \sqrt{-13}$ is an integral basis of K, $f(t) = t^2 + 13$ is the minimal polynomial of $\sqrt{13}$, and $\Delta[1, \sqrt{-13}] = 4 \cdot 13$. We calculate the Minkowski bound:

$$c = \frac{4}{\pi} \frac{2!}{4} \sqrt{4 \cdot 13} \approx 4.591.$$

The only rational primes $\leq c$ are 2, 3. We shall factorize $\langle 2 \rangle$ and $\langle 3 \rangle$. Applying Dedekind's criterion (Theorem 4.73), $\langle 3 \rangle$ is prime as $f(t) \equiv t^2 + 1 \pmod{3}$ is irreducible. As $f(t) \equiv t^2 + 2t + 1 = (t+1)^2 \pmod{2}$, we have $\langle 2 \rangle = \mathfrak{p}_2^2$, where $\mathfrak{p}_2 = \langle 2, 1 + \sqrt{-13} \rangle$. Moreover, we have $N(\mathfrak{p}_2) = 2$ and $N(\langle 3 \rangle) = 3^2 > 4$, so $\operatorname{Cl}(K)$ is generated by \mathfrak{p}_2 . We also know that \mathfrak{p}_2^2 is a principal ideal $\langle 2 \rangle$. Therefore $\operatorname{Cl}(K) \cong \mathbb{Z}/2\mathbb{Z}$, which is generated by the class of \mathfrak{p}_2 .

(d) See Example 6.50.

(e) Let $K = \mathbb{Q}(\sqrt{-65})$. Then d = 2, r = 0, and s = 1. Note that $1, \sqrt{-65}$ is an integral basis of K, $f(t) = t^2 + 65$ is the minimal polynomial of $\sqrt{-65}$, and $\Delta[1, \sqrt{-65}] = 4 \cdot 65$. We calculate the Minkowski bound:

$$c = \frac{4}{\pi} \frac{2!}{4} \sqrt{4 \cdot 65} \approx 10.265$$

The only rational primes $\leq c$ are 2, 3, 5, 7. We shall factorize $\langle 2 \rangle$, $\langle 3 \rangle$, $\langle 5 \rangle$, and $\langle 7 \rangle$. We first factorize the minimal polynomial f(t) as follows:

$$f(t) \equiv t^2 + 2t + 1 = (t+1)^2 \pmod{2},$$

$$f(t) \equiv t^2 - 1 = (t+1)(t-1) \pmod{3},$$

$$f(t) \equiv t^2 \pmod{5},$$

$$f(t) \equiv t^2 + 2 \pmod{7}.$$

Applying Dedekind's criterion (Theorem 4.73), $\langle 7 \rangle$ is prime as $f(t) \equiv t^2 + 2 \pmod{7}$ is irreducible, and

$$\begin{split} \langle 2 \rangle &= \mathfrak{p}_2^2, \quad \mathfrak{p}_2 = \langle 2, 1 + \sqrt{-65} \rangle, \\ \langle 3 \rangle &= \mathfrak{p}_3 \mathfrak{p}_3', \quad \mathfrak{p}_3, \mathfrak{p}_3' = \langle 3, 1 + \sqrt{-65} \rangle, \langle 3, 1 - \sqrt{-65} \rangle, \\ \langle 5 \rangle &= \mathfrak{p}_5^2, \quad \mathfrak{p}_5 = \langle 5, \sqrt{-65} \rangle. \end{split}$$

Moreover, we have $N(\mathfrak{p}_2) = 2$, $N(\mathfrak{p}_3) = N(\mathfrak{p}'_3) = 3$, $N(\mathfrak{p}_5) = 5^2$, and $N(\langle 7 \rangle) = 7^2 > c$. As $\mathfrak{p}_3 \sim \mathfrak{p}'_3$, $\operatorname{Cl}(K)$ is generated by $[\mathfrak{p}_2]$, $[\mathfrak{p}_3]$ and $[\mathfrak{p}_5]$.

Now we look for small $a \in \mathbb{Z}$ such that $N(a+\sqrt{-65}) = a^2+65$ only factors of 2, 3, and 5. By straightforward calculation, we find $N(4 + \sqrt{-65}) = 3^4$ and $N(5+\sqrt{-65}) = 2 \cdot 3^2 \cdot 5$. Since 3 does not divide $\langle 4+\sqrt{-65} \rangle$, $\langle 4+\sqrt{-65} \rangle$ is only divisible by only one of \mathfrak{p}_3 or \mathfrak{p}'_3 . Without loss of generality, let \mathfrak{p}'_3 be the factor of $\langle 4+\sqrt{-65} \rangle$. As $\langle 4+\sqrt{-65} \rangle$ and $\langle 5+\sqrt{-65} \rangle$ are coprime, we get the factorization $\langle 5+\sqrt{-65} \rangle = \mathfrak{p}_2\mathfrak{p}_3^2\mathfrak{p}_5$. It follows that $[\mathfrak{p}_2\mathfrak{p}_3^2\mathfrak{p}_5] = 1$, i.e. $[\mathfrak{p}_5] = [\mathfrak{p}_5^{-1}] = [\mathfrak{p}_2\mathfrak{p}_3^2]$, hence $\operatorname{Cl}(K)$ is generated by $[\mathfrak{p}_2]$ and $[\mathfrak{p}_3]$.

Recall $[\mathfrak{p}_2]^2 = [\langle 2 \rangle] = 1$ and $[\mathfrak{p}_3]^4 = [\langle 4 + \sqrt{-65} \rangle] = 1$. As there is no integral solution of $x^2 + 65y^2 = 2$, \mathfrak{p}_2 is not principal. As $(\pm 3, 0)$ are the only integral solutions of $x^2 + 65y^2 = 9$, one can also check that \mathfrak{p}_3^2 is not principal. Thus, $[\mathfrak{p}_2]$ has order 2 and $[\mathfrak{p}_3]$ has order 4.

We still need to check if $\mathfrak{p}_2\mathfrak{p}_3^2$ is principal. Since there is no integral solution of $x^2 + 65y^2 = 18$, $\mathfrak{p}_2\mathfrak{p}_3^2$ is not principal. Therefore,

$$\operatorname{Cl}(K) \cong \langle [\mathfrak{p}_2] \rangle \times \langle [\mathfrak{p}_3] \rangle \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

Problem 4

(a) We saw above (c) of Problem 3 that $h_K = 2$ for $K = \mathbb{Q}(\sqrt{-13})$. Since h_K is not divisible by 3, we may apply Proposition 7.1: if $y^3 = x^2 + 13$ then there exists $n \in \mathbb{Z}$ such that $x = n(n^2 - 3 \cdot 13)$ and $3n^2 = 13 \pm 1$. The only integral solution to these equations are $n = \pm 2$, hence $(x, y) = (\mp 70, \pm 17)$.

(b) One can show that $h_K = 4$ for $K = \mathbb{Q}(\sqrt{-30})$. Again applying Proposition 7.1, if $y^3 = x^2 + 30$ then there exists $n \in \mathbb{Z}$ such that $3n^2 = 30\pm 1$, which is impossible. Thus there is no integral solution to $y^3 = x^2 + 30$.