Problem sheet 7 Solutions

Problem 1

(a) By linearlity one can easily check that $\left(a+a^{\prime}, b+b^{\prime}\right),(k a, k b) \in \Lambda$ for any $(a, b),\left(a^{\prime}, b^{\prime}\right) \in \Lambda$ and $k \in \mathbb{Z}$. It shows that Λ is a subgroup of \mathbb{Z}^{2}. We also observe that Λ is a lattice with a basis $(1, u),(0, p)$. Then the index of Λ in \mathbb{Z}^{2} is computed by

$$
\left|\operatorname{det}\left(\begin{array}{ll}
1 & u \\
0 & p
\end{array}\right)\right|=p
$$

(b) Similar to (a), Λ is a sublattice of \mathbb{Z}^{4} by the linearlity of the equations. Any element of Λ can be written in a form of $\left(a, b, u a+v b+p c^{\prime},-v a+u b+\right.$ $\left.p d^{\prime}\right) \in \mathbb{Z}^{4}$, where $a, b, c^{\prime}, d^{\prime} \in \mathbb{Z}$. Hence, $(1,0, u,-v),(0,1, v, u),(0,0, p, 0),(0,0,0, p)$ is a basis of Λ. It follows that the index of Λ in \mathbb{Z}^{2} is

$$
\left|\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & u & -v \\
0 & 1 & v & u \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)\right|=p^{2} .
$$

Problem 2

Let $I_{1}=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{r}^{e_{r}}$ be the factorization of I_{1}, where $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}$ are distinct maximal ideals and $e_{1}, \cdots, e_{r} \geq 1$. We also factorize $I_{2}=\mathfrak{q}_{1}^{f_{1}} \cdots \mathfrak{q}_{s}^{f_{s}}$, where $\mathfrak{q}_{1}, \cdots, \mathfrak{q}_{s}$ are distinct maximal ideals and $f_{1}, \cdots, f_{s} \geq 1$. Since I_{1} and I_{2} are coprime, the maximal ideals $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}, \mathfrak{q}_{1}, \cdots, \mathfrak{q}_{s}$ are all distinct. It follows that $J^{k}=I_{1} I_{2}$ is factorized as $J^{k}=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{r}^{e_{r}} \mathfrak{q}_{1}^{f_{1}} \cdots \mathfrak{q}_{s}^{f_{s}}$, hence $e_{1}, \cdots, e_{r}, f_{1}, \cdots, f_{s}$ are divided by k. Let $e_{i}=k e_{i}^{\prime}$ and $f_{j}=k f_{j}^{\prime}$ for $1 \leq i \leq r$ and $1 \leq j \leq s$. Then we have $I_{1}=J_{1}^{k}$ and $I_{2}=J_{2}^{k}$ for $J_{1}=\mathfrak{p}_{1}^{e_{1}^{\prime}} \cdots \mathfrak{p}_{r}^{e_{r}^{\prime}}$ and $J_{2}=\mathfrak{q}_{1}^{f_{1}^{\prime}} \cdots \mathfrak{q}_{s}^{f_{s}^{\prime}}$.

Problem 3

(a) Let $K=\mathbb{Q}(\sqrt{3})$. Then $d=2, r=1$, and $s=0$. Note that $1, \sqrt{3}$ is an integral basis of K, and $\Delta[1, \sqrt{3}]=4 \cdot 3=12$. We calculate the Minkowski bound:

$$
c=\frac{2!}{4} \sqrt{12} \approx 1.732 .
$$

By Theorem 6.41, every ideal class contains an ideal with norm 1, i.e, $h(K)=$ 1.

Let $K=\mathbb{Q}(\sqrt{-3})$. Then $d=2, r=0$, and $s=1$. Note that $1, \tau$ is an integral basis of K, where $\tau=\frac{1+\sqrt{-3}}{2}$, and $\Delta[1, \tau]=3$. We calculate the Minkowski bound:

$$
c=\frac{4}{\pi} \frac{2!}{4} \sqrt{3} \approx 1.102
$$

By Theorem 6.41, every ideal class contains an ideal with norm 1, i.e, $h(K)=$ 1.
(b) Let $K=\mathbb{Q}(\sqrt{-11})$. Then $d=2, r=0$, and $s=1$. Note that $1, \tau$ is an integral basis of K, where $\tau=\frac{1+\sqrt{-11}}{2}$, and $\Delta[1, \tau]=11$. We calculate the Minkowski bound:

$$
c=\frac{4}{\pi} \frac{2!}{4} \sqrt{11} \approx 2.111
$$

By Theorem 6.41, every ideal class contains an ideal with norm ≤ 2. Suppose now that \mathfrak{a} has norm 2. Then $\mathfrak{a} \mid\langle 2\rangle$, so we shall factorize $\langle 2\rangle$. Recall that τ is a root of the polynomial $f(t)=t^{2}-t+3$. Applying Dedekind's criterion (Theorem 4.73), $\langle 2\rangle$ is prime as $f(t) \equiv t^{2}+t+1(\bmod 2)$ is irreducible. Moreover, we have $N(\langle 2\rangle)=2^{2}$, so there are no ideals of norm 2. Thus $h(K)=1$.
(c) Let $K=\mathbb{Q}(\sqrt{-13})$. Then $d=2, r=0$, and $s=1$. Note that $1, \sqrt{-13}$ is an integral basis of $K, f(t)=t^{2}+13$ is the minimal polynomial of $\sqrt{13}$, and $\Delta[1, \sqrt{-13}]=4 \cdot 13$. We calculate the Minkowski bound:

$$
c=\frac{4}{\pi} \frac{2!}{4} \sqrt{4 \cdot 13} \approx 4.591
$$

The only rational primes $\leq c$ are 2,3 . We shall factorize $\langle 2\rangle$ and $\langle 3\rangle$. Applying Dedekind's criterion (Theorem 4.73), $\langle 3\rangle$ is prime as $f(t) \equiv t^{2}+1(\bmod 3)$ is irreducible. As $f(t) \equiv t^{2}+2 t+1=(t+1)^{2}(\bmod 2)$, we have $\langle 2\rangle=\mathfrak{p}_{2}^{2}$, where $\mathfrak{p}_{2}=\langle 2,1+\sqrt{-13}\rangle$. Moreover, we have $N\left(\mathfrak{p}_{2}\right)=2$ and $N(\langle 3\rangle)=3^{2}>4$, so $\mathrm{Cl}(K)$ is generated by \mathfrak{p}_{2}. We also know that \mathfrak{p}_{2}^{2} is a principal ideal $\langle 2\rangle$. Therefore $\mathrm{Cl}(K) \cong \mathbb{Z} / 2 \mathbb{Z}$, which is generated by the class of \mathfrak{p}_{2}.
(d) See Example 6.50.
(e) Let $K=\mathbb{Q}(\sqrt{-65})$. Then $d=2, r=0$, and $s=1$. Note that $1, \sqrt{-65}$ is an integral basis of $K, f(t)=t^{2}+65$ is the minimal polynomial of $\sqrt{-65}$, and $\Delta[1, \sqrt{-65}]=4 \cdot 65$. We calculate the Minkowski bound:

$$
c=\frac{4}{\pi} \frac{2!}{4} \sqrt{4 \cdot 65} \approx 10.265
$$

The only rational primes $\leq c$ are $2,3,5,7$. We shall factorize $\langle 2\rangle,\langle 3\rangle,\langle 5\rangle$, and $\langle 7\rangle$. We first factorize the minimal polynomial $f(t)$ as follows:

$$
f(t) \equiv t^{2}+2 t+1=(t+1)^{2}(\bmod 2)
$$

$$
\begin{gathered}
f(t) \equiv t^{2}-1=(t+1)(t-1)(\bmod 3), \\
f(t) \equiv t^{2}(\bmod 5), \\
f(t) \equiv t^{2}+2(\bmod 7) .
\end{gathered}
$$

Applying Dedekind's criterion (Theorem 4.73), $\langle 7\rangle$ is prime as $f(t) \equiv$ $t^{2}+2(\bmod 7)$ is irreducible, and

$$
\begin{gathered}
\langle 2\rangle=\mathfrak{p}_{2}^{2}, \quad \mathfrak{p}_{2}=\langle 2,1+\sqrt{-65}\rangle, \\
\langle 3\rangle=\mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}, \quad \mathfrak{p}_{3}, \mathfrak{p}_{3}^{\prime}=\langle 3,1+\sqrt{-65}\rangle,\langle 3,1-\sqrt{-65}\rangle, \\
\langle 5\rangle=\mathfrak{p}_{5}^{2}, \quad \mathfrak{p}_{5}=\langle 5, \sqrt{-65}\rangle .
\end{gathered}
$$

Moreover, we have $N\left(\mathfrak{p}_{2}\right)=2, N\left(\mathfrak{p}_{3}\right)=N\left(\mathfrak{p}_{3}^{\prime}\right)=3, N\left(\mathfrak{p}_{5}\right)=5^{2}$, and $N(\langle 7\rangle)=7^{2}>c$. As $\mathfrak{p}_{3} \sim \mathfrak{p}_{3}^{\prime}, \mathrm{Cl}(K)$ is generated by $\left[\mathfrak{p}_{2}\right],\left[\mathfrak{p}_{3}\right]$ and $\left[\mathfrak{p}_{5}\right]$.

Now we look for small $a \in \mathbb{Z}$ such that $N(a+\sqrt{-65})=a^{2}+65$ only factors of 2,3 , and 5 . By straightforward calculation, we find $N(4+\sqrt{-65})=3^{4}$ and $N(5+\sqrt{-65})=2 \cdot 3^{2} \cdot 5$. Since 3 does not divide $\langle 4+\sqrt{-65}\rangle,\langle 4+\sqrt{-65}\rangle$ is only divisible by only one of \mathfrak{p}_{3} or $\mathfrak{p}_{3}^{\prime}$. Without loss of generality, let $\mathfrak{p}_{3}^{\prime}$ be the factor of $\langle 4+\sqrt{-65}\rangle$. As $\langle 4+\sqrt{-65\rangle}$ and $\langle 5+\sqrt{-65\rangle}$ are coprime, we get the factorization $\langle 5+\sqrt{-65}\rangle=\mathfrak{p}_{2} \mathfrak{p}_{3}^{2} \mathfrak{p}_{5}$. It follows that $\left[\mathfrak{p}_{2} \mathfrak{p}_{3}^{2} \mathfrak{p}_{5}\right]=1$, i.e. $\left[\mathfrak{p}_{5}\right]=\left[\mathfrak{p}_{5}^{-1}\right]=\left[\mathfrak{p}_{2} \mathfrak{p}_{3}^{2}\right]$, hence $\mathrm{Cl}(K)$ is generated by $\left[\mathfrak{p}_{2}\right]$ and $\left[\mathfrak{p}_{3}\right]$.

Recall $\left[\mathfrak{p}_{2}\right]^{2}=[\langle 2\rangle]=1$ and $\left[\mathfrak{p}_{3}\right]^{4}=[\langle 4+\sqrt{-65\rangle}]=1$. As there is no integral solution of $x^{2}+65 y^{2}=2, \mathfrak{p}_{2}$ is not principal. As $(\pm 3,0)$ are the only integral solutions of $x^{2}+65 y^{2}=9$, one can also check that \mathfrak{p}_{3}^{2} is not principal. Thus, $\left[\mathfrak{p}_{2}\right]$ has order 2 and $\left[\mathfrak{p}_{3}\right]$ has order 4.

We still need to check if $\mathfrak{p}_{2} \mathfrak{p}_{3}^{2}$ is principal. Since there is no integral solution of $x^{2}+65 y^{2}=18, \mathfrak{p}_{2} \mathfrak{p}_{3}^{2}$ is not principal. Therefore,

$$
\mathrm{Cl}(K) \cong\left\langle\left[\mathfrak{p}_{2}\right]\right\rangle \times\left\langle\left[\mathfrak{p}_{3}\right]\right\rangle \cong \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} .
$$

Problem 4

(a) We saw above (c) of Problem 3 that $h_{K}=2$ for $K=\mathbb{Q}(\sqrt{-13})$. Since h_{K} is not divisible by 3 , we may apply Proposition 7.1: if $y^{3}=x^{2}+13$ then there exists $n \in \mathbb{Z}$ such that $x=n\left(n^{2}-3 \cdot 13\right)$ and $3 n^{2}=13 \pm 1$. The only integral solution to these equations are $n= \pm 2$, hence $(x, y)=(\mp 70, \pm 17)$.
(b) One can show that $h_{K}=4$ for $K=\mathbb{Q}(\sqrt{-30})$. Again applying Proposition 7.1, if $y^{3}=x^{2}+30$ then there exists $n \in \mathbb{Z}$ such that $3 n^{2}=30 \pm 1$, which is impossible. Thus there is no integral solution to $y^{3}=x^{2}+30$.

