
Problem sheet 7 Solutions

Problem 1

(a) By linearlity one can easily check that (a+a′, b+b′), (ka, kb) ∈ Λ for any
(a, b), (a′, b′) ∈ Λ and k ∈ Z. It shows that Λ is a subgroup of Z2. We also
observe that Λ is a lattice with a basis (1, u), (0, p). Then the index of Λ in
Z2 is computed by ∣∣∣∣det(1 u

0 p

)∣∣∣∣ = p.

(b) Similar to (a), Λ is a sublattice of Z4 by the linearlity of the equations.
Any element of Λ can be written in a form of (a, b, ua+ vb+ pc′,−va+ ub+
pd′) ∈ Z4, where a, b, c′, d′ ∈ Z. Hence, (1, 0, u,−v), (0, 1, v, u), (0, 0, p, 0), (0, 0, 0, p)
is a basis of Λ. It follows that the index of Λ in Z2 is∣∣∣∣∣∣∣∣det


1 0 u −v
0 1 v u
0 0 p 0
0 0 0 p


∣∣∣∣∣∣∣∣ = p2.

Problem 2

Let I1 = pe11 · · · perr be the factorization of I1, where p1, · · · , pr are distinct
maximal ideals and e1, · · · , er ≥ 1. We also factorize I2 = qf11 · · · qfss , where
q1, · · · , qs are distinct maximal ideals and f1, · · · , fs ≥ 1. Since I1 and
I2 are coprime, the maximal ideals p1, · · · , pr, q1, · · · , qs are all distinct.
It follows that Jk = I1I2 is factorized as Jk = pe11 · · · perr qf11 · · · qfss , hence
e1, · · · , er, f1, · · · , fs are divided by k. Let ei = ke′i and fj = kf ′

j for
1 ≤ i ≤ r and 1 ≤ j ≤ s. Then we have I1 = Jk

1 and I2 = Jk
2 for

J1 = p
e′1
1 · · · pe

′
r
r and J2 = q

f ′
1

1 · · · qf
′
s

s .

Problem 3

(a) Let K = Q(
√
3). Then d = 2, r = 1, and s = 0. Note that 1,

√
3 is an

integral basis of K, and ∆[1,
√
3] = 4 · 3 = 12. We calculate the Minkowski

bound:
c =

2!

4

√
12 ≈ 1.732.

By Theorem 6.41, every ideal class contains an ideal with norm 1, i.e, h(K) =
1.
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Let K = Q(
√
−3). Then d = 2, r = 0, and s = 1. Note that 1, τ is an

integral basis of K, where τ = 1+
√
−3

2 , and ∆[1, τ ] = 3. We calculate the
Minkowski bound:

c =
4

π

2!

4

√
3 ≈ 1.102.

By Theorem 6.41, every ideal class contains an ideal with norm 1, i.e, h(K) =
1.

(b) Let K = Q(
√
−11). Then d = 2, r = 0, and s = 1. Note that 1, τ is

an integral basis of K, where τ = 1+
√
−11
2 , and ∆[1, τ ] = 11. We calculate

the Minkowski bound:
c =

4

π

2!

4

√
11 ≈ 2.111.

By Theorem 6.41, every ideal class contains an ideal with norm ≤ 2. Suppose
now that a has norm 2. Then a|⟨2⟩, so we shall factorize ⟨2⟩. Recall that τ
is a root of the polynomial f(t) = t2 − t+ 3. Applying Dedekind’s criterion
(Theorem 4.73), ⟨2⟩ is prime as f(t) ≡ t2 + t + 1(mod 2) is irreducible.
Moreover, we have N(⟨2⟩) = 22, so there are no ideals of norm 2. Thus
h(K) = 1.

(c) Let K = Q(
√
−13). Then d = 2, r = 0, and s = 1. Note that 1,

√
−13

is an integral basis of K, f(t) = t2 + 13 is the minimal polynomial of
√
13,

and ∆[1,
√
−13] = 4 · 13. We calculate the Minkowski bound:

c =
4

π

2!

4

√
4 · 13 ≈ 4.591.

The only rational primes ≤ c are 2, 3. We shall factorize ⟨2⟩ and ⟨3⟩. Apply-
ing Dedekind’s criterion (Theorem 4.73), ⟨3⟩ is prime as f(t) ≡ t2+1(mod 3)
is irreducible. As f(t) ≡ t2+2t+1 = (t+1)2(mod 2), we have ⟨2⟩ = p22, where
p2 = ⟨2, 1 +

√
−13⟩. Moreover, we have N(p2) = 2 and N(⟨3⟩) = 32 > 4,

so Cl(K) is generated by p2. We also know that p22 is a principal ideal ⟨2⟩.
Therefore Cl(K) ∼= Z/2Z, which is generated by the class of p2.

(d) See Example 6.50.
(e) Let K = Q(

√
−65). Then d = 2, r = 0, and s = 1. Note that 1,

√
−65

is an integral basis of K, f(t) = t2 +65 is the minimal polynomial of
√
−65,

and ∆[1,
√
−65] = 4 · 65. We calculate the Minkowski bound:

c =
4

π

2!

4

√
4 · 65 ≈ 10.265.

The only rational primes ≤ c are 2, 3, 5, 7. We shall factorize ⟨2⟩, ⟨3⟩, ⟨5⟩,
and ⟨7⟩. We first factorize the minimal polynomial f(t) as follows:

f(t) ≡ t2 + 2t+ 1 = (t+ 1)2(mod 2),
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f(t) ≡ t2 − 1 = (t+ 1)(t− 1)(mod 3),

f(t) ≡ t2(mod 5),

f(t) ≡ t2 + 2(mod 7).

Applying Dedekind’s criterion (Theorem 4.73), ⟨7⟩ is prime as f(t) ≡
t2 + 2(mod 7) is irreducible, and

⟨2⟩ = p22, p2 = ⟨2, 1 +
√
−65⟩,

⟨3⟩ = p3p
′
3, p3, p

′
3 = ⟨3, 1 +

√
−65⟩, ⟨3, 1−

√
−65⟩,

⟨5⟩ = p25, p5 = ⟨5,
√
−65⟩.

Moreover, we have N(p2) = 2, N(p3) = N(p′3) = 3, N(p5) = 52, and
N(⟨7⟩) = 72 > c. As p3 ∼ p′3, Cl(K) is generated by [p2], [p3] and [p5].

Now we look for small a ∈ Z such that N(a+
√
−65) = a2+65 only factors

of 2, 3, and 5. By straightforward calculation, we find N(4 +
√
−65) = 34

and N(5+
√
−65) = 2 ·32 ·5. Since 3 does not divide ⟨4+

√
−65⟩, ⟨4+

√
−65⟩

is only divisible by only one of p3 or p′3. Without loss of generality, let p′3 be
the factor of ⟨4 +

√
−65⟩. As ⟨4 +

√
−65⟩ and ⟨5 +

√
−65⟩ are coprime, we

get the factorization ⟨5 +
√
−65⟩ = p2p

2
3p5. It follows that [p2p

2
3p5] = 1, i.e.

[p5] = [p−1
5 ] = [p2p

2
3], hence Cl(K) is generated by [p2] and [p3].

Recall [p2]2 = [⟨2⟩] = 1 and [p3]
4 = [⟨4 +

√
−65⟩] = 1. As there is no

integral solution of x2 + 65y2 = 2, p2 is not principal. As (±3, 0) are the
only integral solutions of x2 + 65y2 = 9, one can also check that p23 is not
principal. Thus, [p2] has order 2 and [p3] has order 4.

We still need to check if p2p
2
3 is principal. Since there is no integral

solution of x2 + 65y2 = 18, p2p23 is not principal. Therefore,

Cl(K) ∼= ⟨[p2]⟩ × ⟨[p3]⟩ ∼= Z/4Z× Z/2Z.

Problem 4

(a) We saw above (c) of Problem 3 that hK = 2 for K = Q(
√
−13). Since

hK is not divisible by 3, we may apply Proposition 7.1: if y3 = x2 +13 then
there exists n ∈ Z such that x = n(n2 − 3 · 13) and 3n2 = 13± 1. The only
integral solution to these equations are n = ±2, hence (x, y) = (∓70,±17).

(b) One can show that hK = 4 for K = Q(
√
−30). Again applying

Proposition 7.1, if y3 = x2+30 then there exists n ∈ Z such that 3n2 = 30±1,
which is impossible. Thus there is no integral solution to y3 = x2 + 30.
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