
Problem sheet 8 Solutions

Problem 1

(a) Let α = 2
1
3 . The minimal polynomial of α is f(x) = x3−2. Let σ1, σ2, σ3

be the complex embeddings of K and let αi = σi(α) for i = 1, 2, 3. We also
write

s1 =
3∑

i=1

αi, s2 =
∑
i ̸=j

αiαj , s3 =
3∏

i=1

αi.

By Vieta’s formulas we get s1 = 0, s2 = 0, and s3 = 2.
We will show that 1, α, α2 is an integral basis of K. By Corollary 2.42,

we have ∆[1, α, α2] = −108 = −2233. Note that the largest integer N such
that N2|∆[1, α, α2] is 6. Hence, it is sufficient to prove that for a0, a1, a2 ∈
{0, 1, 2, 3, 4, 5}

θ =
1

6

2∑
j=0

ajα
j

is an algebraic integer only if aj = 0 for all j = 0, 1, 2.
If θ is an algebraic integer, then

N(θ) =
3∏

i=1

σi(θ) =
1

63

3∏
i=1

(a0 + a1αi + a2α
2
i )

=
1

63
{a30 + a31s3 + a32s

2
3 + a20a1s1 + a0a

2
1s2 + a20a2(s

2
1 − 2s2)

+ a0a
2
2(s

2
2 − s1s3) + a21a2s1s3 + a1a

2
2s2s3 + a0a1a2(s

2
2 − 3s3)}

=
a30 + 2a31 + 4a32 − 6a0a1a2

63

is also an integer. One can check that a30 + 2a31 + 4a32 − 6a0a1a2 is divisible
by 63 only if a0 = a1 = a2 = 0, hence 1, α, α2 is an integral basis of K.

(b) For K = Q(2
1
3 ) we have d = 3, r = 3, and s = 0. We calculate the

Minkowski bound:

c =
d!

dd

√
|∆| = 3!

33

√
108 ≈ 2.309.

The only rational prime ≤ c is 2. Note that ⟨2⟩ = p3, where p = ⟨2
1
3 ⟩. As p

is principal, Cl(K) is trivial.
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Problem 2

(a) Let f(x) = xp−1 + xp−2 + · · ·+ 1. Since

(x− 1)f(x) = xp − 1 = (x− 1)(x− ζ)(x− ζ2) · · · (x− ζp−1),

we obtain the identity f(x) = (x− ζ)(x− ζ2) · · · (x− ζp−1). It follows that

N(1− ζ) =

p−1∏
i=1

(1− ζi) = f(1) = p.

Thus, ⟨1− ζ⟩ is a prime ideal as N(1− ζ) is prime.
(b) Note that f(x) is the minimal polynomial of ζ and we have

f(x) ≡ (x− 1)p−1(mod p).

By Dedekind’s criterion (Theorem 4.73), ⟨p⟩ = pp−1, where p = ⟨1 − ζ, p⟩.
Indeed, we have p = ⟨1 − ζ⟩ as 1 − ζ|f(1) = p. It follows from ⟨p⟩ =
⟨1−ζ⟩p−1 = ⟨(1−ζ)p−1⟩ that there exists u ∈ O×

F such that p = u(1−ζ)p−1.
(c) Let G be the group of roots of unity in OF . As the degree of e

2πi
n goes

to infinity as n → ∞, G is a finite abelian group. Let e
2πm1i

n1 , · · · , e
2πmki

nk ,
where gcd(mi, ni) = 1, be generators of G. Observe that these generate
e

2πi
N , where N is the largest common multiple of n1, · · · , nk. It follows that

G is indeed a cyclic group. Let ζN = e
2πi
N be a generator of G. Since ζN

generates ζ, we have p|N . On the other hand, it follows from ζN ∈ OF that
Q(ζN ) = Q(ζ), hence ϕ(N) = [Q(ζN ) : Q] = [Q(ζ) : Q] = ϕ(p) = p − 1.
Elementary number theory implies that N is either p or 2p. Therefore,
G = {±ζs : s ∈ Z}.

(d) The argument in (b) still works even if we replace ζ with ζr for r
coprime to p. We thus have ⟨p⟩ = ⟨(1 − ζr)p−1⟩ = ⟨(1 − ζs)p−1⟩ for r, s
coprime to p. It follows that ⟨1− ζr⟩ = ⟨1− ζs⟩, hence there exists u ∈ O×

F

such that 1− ζr = u(1− ζs).

Problem 3

Let s1, · · · , sn be the elementary symmetric polynomials in n variables. Let
σ1, · · · , σn be the complex embeddings and denote αi = σi(α) for i =
1, · · · , n. If |αi| ≤ N for all i, then |sk(α1, · · · , αn)| ≤ 2nNn for any
1 ≤ k ≤ n. In particular, there are only finitely many integral polyno-
mials xn − s1x

n−1 + · · · + (−1)nsn satisfying this bound. It implies that
there are only finitely many α with conjugates of bounded complex absolute
value.
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