## Problem sheet 8 Solutions

## Problem 1

(a) Let $\alpha=2^{\frac{1}{3}}$. The minimal polynomial of $\alpha$ is $f(x)=x^{3}-2$. Let $\sigma_{1}, \sigma_{2}, \sigma_{3}$ be the complex embeddings of $K$ and let $\alpha_{i}=\sigma_{i}(\alpha)$ for $i=1,2,3$. We also write

$$
s_{1}=\sum_{i=1}^{3} \alpha_{i}, \quad s_{2}=\sum_{i \neq j} \alpha_{i} \alpha_{j}, \quad s_{3}=\prod_{i=1}^{3} \alpha_{i} .
$$

By Vieta's formulas we get $s_{1}=0, s_{2}=0$, and $s_{3}=2$.
We will show that $1, \alpha, \alpha^{2}$ is an integral basis of $K$. By Corollary 2.42, we have $\Delta\left[1, \alpha, \alpha^{2}\right]=-108=-2^{2} 3^{3}$. Note that the largest integer $N$ such that $N^{2} \mid \Delta\left[1, \alpha, \alpha^{2}\right]$ is 6 . Hence, it is sufficient to prove that for $a_{0}, a_{1}, a_{2} \in$ $\{0,1,2,3,4,5\}$

$$
\theta=\frac{1}{6} \sum_{j=0}^{2} a_{j} \alpha^{j}
$$

is an algebraic integer only if $a_{j}=0$ for all $j=0,1,2$.
If $\theta$ is an algebraic integer, then

$$
\begin{aligned}
N(\theta)= & \prod_{i=1}^{3} \sigma_{i}(\theta)=\frac{1}{6^{3}} \prod_{i=1}^{3}\left(a_{0}+a_{1} \alpha_{i}+a_{2} \alpha_{i}^{2}\right) \\
= & \frac{1}{6^{3}}\left\{a_{0}^{3}+a_{1}^{3} s_{3}+a_{2}^{3} s_{3}^{2}+a_{0}^{2} a_{1} s_{1}+a_{0} a_{1}^{2} s_{2}+a_{0}^{2} a_{2}\left(s_{1}^{2}-2 s_{2}\right)\right. \\
& \left.+a_{0} a_{2}^{2}\left(s_{2}^{2}-s_{1} s_{3}\right)+a_{1}^{2} a_{2} s_{1} s_{3}+a_{1} a_{2}^{2} s_{2} s_{3}+a_{0} a_{1} a_{2}\left(s_{2}^{2}-3 s_{3}\right)\right\} \\
= & \frac{a_{0}^{3}+2 a_{1}^{3}+4 a_{2}^{3}-6 a_{0} a_{1} a_{2}}{6^{3}}
\end{aligned}
$$

is also an integer. One can check that $a_{0}^{3}+2 a_{1}^{3}+4 a_{2}^{3}-6 a_{0} a_{1} a_{2}$ is divisible by $6^{3}$ only if $a_{0}=a_{1}=a_{2}=0$, hence $1, \alpha, \alpha^{2}$ is an integral basis of $K$.
(b) For $K=\mathbb{Q}\left(2^{\frac{1}{3}}\right)$ we have $d=3, r=3$, and $s=0$. We calculate the Minkowski bound:

$$
c=\frac{d!}{d^{d}} \sqrt{|\Delta|}=\frac{3!}{3^{3}} \sqrt{108} \approx 2.309 .
$$

The only rational prime $\leq c$ is 2 . Note that $\langle 2\rangle=\mathfrak{p}^{3}$, where $\mathfrak{p}=\left\langle 2^{\frac{1}{3}}\right\rangle$. As $\mathfrak{p}$ is principal, $\mathrm{Cl}(K)$ is trivial.

## Problem 2

(a) Let $f(x)=x^{p-1}+x^{p-2}+\cdots+1$. Since

$$
(x-1) f(x)=x^{p}-1=(x-1)(x-\zeta)\left(x-\zeta^{2}\right) \cdots\left(x-\zeta^{p-1}\right),
$$

we obtain the identity $f(x)=(x-\zeta)\left(x-\zeta^{2}\right) \cdots\left(x-\zeta^{p-1}\right)$. It follows that

$$
N(1-\zeta)=\prod_{i=1}^{p-1}\left(1-\zeta^{i}\right)=f(1)=p
$$

Thus, $\langle 1-\zeta\rangle$ is a prime ideal as $N(1-\zeta)$ is prime.
(b) Note that $f(x)$ is the minimal polynomial of $\zeta$ and we have

$$
f(x) \equiv(x-1)^{p-1}(\bmod p)
$$

By Dedekind's criterion (Theorem 4.73), $\langle p\rangle=\mathfrak{p}^{p-1}$, where $\mathfrak{p}=\langle 1-\zeta, p\rangle$. Indeed, we have $\mathfrak{p}=\langle 1-\zeta\rangle$ as $1-\zeta \mid f(1)=p$. It follows from $\langle p\rangle=$ $\langle 1-\zeta\rangle^{p-1}=\left\langle(1-\zeta)^{p-1}\right\rangle$ that there exists $u \in O_{F}^{\times}$such that $p=u(1-\zeta)^{p-1}$.
(c) Let $G$ be the group of roots of unity in $O_{F}$. As the degree of $e^{\frac{2 \pi i}{n}}$ goes to infinity as $n \rightarrow \infty, G$ is a finite abelian group. Let $e^{\frac{2 \pi m_{1} i}{n_{1}}}, \cdots, e^{\frac{2 \pi m_{k} i}{n_{k}}}$, where $\operatorname{gcd}\left(m_{i}, n_{i}\right)=1$, be generators of $G$. Observe that these generate $e^{\frac{2 \pi i}{N}}$, where $N$ is the largest common multiple of $n_{1}, \cdots, n_{k}$. It follows that $G$ is indeed a cyclic group. Let $\zeta_{N}=e^{\frac{2 \pi i}{N}}$ be a generator of $G$. Since $\zeta_{N}$ generates $\zeta$, we have $p \mid N$. On the other hand, it follows from $\zeta_{N} \in O_{F}$ that $\mathbb{Q}\left(\zeta_{N}\right)=\mathbb{Q}(\zeta)$, hence $\phi(N)=\left[\mathbb{Q}\left(\zeta_{N}\right): \mathbb{Q}\right]=[\mathbb{Q}(\zeta): \mathbb{Q}]=\phi(p)=p-1$. Elementary number theory implies that $N$ is either $p$ or $2 p$. Therefore, $G=\left\{ \pm \zeta^{s}: s \in \mathbb{Z}\right\}$.
(d) The argument in (b) still works even if we replace $\zeta$ with $\zeta^{r}$ for $r$ coprime to $p$. We thus have $\langle p\rangle=\left\langle\left(1-\zeta^{r}\right)^{p-1}\right\rangle=\left\langle\left(1-\zeta^{s}\right)^{p-1}\right\rangle$ for $r, s$ coprime to $p$. It follows that $\left\langle 1-\zeta^{r}\right\rangle=\left\langle 1-\zeta^{s}\right\rangle$, hence there exists $u \in O_{F}^{\times}$ such that $1-\zeta^{r}=u\left(1-\zeta^{s}\right)$.

## Problem 3

Let $s_{1}, \cdots, s_{n}$ be the elementary symmetric polynomials in $n$ variables. Let $\sigma_{1}, \cdots, \sigma_{n}$ be the complex embeddings and denote $\alpha_{i}=\sigma_{i}(\alpha)$ for $i=$ $1, \cdots, n$. If $\left|\alpha_{i}\right| \leq N$ for all $i$, then $\left|s_{k}\left(\alpha_{1}, \cdots, \alpha_{n}\right)\right| \leq 2^{n} N^{n}$ for any $1 \leq k \leq n$. In particular, there are only finitely many integral polynomials $x^{n}-s_{1} x^{n-1}+\cdots+(-1)^{n} s_{n}$ satisfying this bound. It implies that there are only finitely many $\alpha$ with conjugates of bounded complex absolute value.

