Problem sheet 8 Solutions

Problem 1

(a) Let o = 23. The minimal polynomial of a is f(z) = 23 —2. Let 01, 02,03
be the complex embeddings of K and let a; = 0;(a) for i = 1,2,3. We also

write
3 3
:Zai, SQZZOéiOéj, 83:1_[041'.
i=1 i#] i=1
By Vieta’s formulas we get s1 =0, so =0, and s3 = 2.

We will show that 1, a, o? is an integral basis of K. By Corollary 2.42,
we have A[l,a,a?] = —108 = —2233. Note that the largest integer N such
that N2|A[l, a, a?] is 6. Hence, it is sufficient to prove that for ag,ay,as €
{0,1,2,3,4,5}
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=5 2w
=0

is an algebraic integer only if a; = 0 for all j = 0,1, 2.
If 4 is an algebraic integer, then

3
1
N(0) = HO’Z —31_[ (ap + a1a; + aza?)

2., 2 2 2 2
= @{ag + a3s3 + ass3 + adais) + agalsy + adas(s? — 2s9)

2/.2 2 2 2
+ agas(s5 — s183) + ajazsiss + ajaszsess + apajas(s; — 3s3)}
- ag + 2a3 + 4a3 — 6apaias
= o

is also an integer. One can check that ao + 2a1 + 4a2 — 6apaias is divisible
by 63 only if ag = a1 = ag = 0, hence 1, a, o? is an integral basis of K.

(b) For K = Q(Qs) we have d = 3, r = 3, and s = 0. We calculate the
Minkowski bound:

d! !
c=VIAl= %\/108 ~ 2.309.

The only rational prime < c is 2. Note that (2) = p3, where p = (2 %> Asp
is principal, C1(K) is trivial.



Problem 2
(a) Let f(x) =aP~!4+aP~2 + ... 4 1. Since

(@ =Df(@)=a? —1=(z~ 1)z~ )z~ (-,
we obtain the identity f(z) = (x — {)(x — ¢?)--- (x — ¢(P~1). It follows that

p—1
Ni-¢=][0-¢)=r0)=p
i=1
Thus, (1 — ) is a prime ideal as N(1 — () is prime.
(b) Note that f(z) is the minimal polynomial of { and we have

f(@) = (z = )P (mod p).

By Dedekind’s criterion (Theorem 4.73), (p) = pP~!, where p = (1 — (,p).
Indeed, we have p = (1 — () as 1 — ¢|f(1) = p. It follows from (p) =
(1—¢)P~1 = ((1—¢)P~!) that there exists u € O} such that p = u(1—¢)P~L.

(c) Let G be the group of roots of unity in Op. As the degree of e goes
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to infinity as n — oo, G is a finite abelian group. Let e ™1 ,.--- e ™ |
where ged(m;,n;) = 1, be generators of G. Observe that these generate

27

e N, where N is the largest common multiple of ny,--- ,ng. It follows that
G is indeed a cyclic group. Let (y = eN be a generator of G. Since (n
generates ¢, we have p|N. On the other hand, it follows from (y € Op that
Q(¢y) = Q(C), hence ¢(N) = [Q(Cy) : Q] = [Q(C) : Q] = 6(p) = p — 1.
Elementary number theory implies that N is either p or 2p. Therefore,
G={£(*:5€Z}.

(d) The argument in (b) still works even if we replace ¢ with (" for r
coprime to p. We thus have (p) = ((1 — ¢")P~1) = ((1 — ¢*)P~1) for 7, s
coprime to p. It follows that (1 — (") = (1 — ¢®), hence there exists u € O}
such that 1 — " = u(1 — ¢¥).

Problem 3

Let s1,--- , s, be the elementary symmetric polynomials in n variables. Let
o1, ,0, be the complex embeddings and denote a; = o;(a) for i =
1,---,n. If |oy| < N for all i, then |sg(aq,---,ap)] < 2"N"™ for any

1 < k < n. In particular, there are only finitely many integral polyno-
mials 2" — s;2"" ! + ... + (=1)"s,, satisfying this bound. It implies that
there are only finitely many « with conjugates of bounded complex absolute
value.



