Problem sheet 8 Solutions

Problem 1

(a) Let $\alpha = 2^{\frac{1}{3}}$. The minimal polynomial of α is $f(x) = x^3 - 2$. Let $\sigma_1, \sigma_2, \sigma_3$ be the complex embeddings of K and let $\alpha_i = \sigma_i(\alpha)$ for i = 1, 2, 3. We also write

$$s_1 = \sum_{i=1}^{3} \alpha_i, \quad s_2 = \sum_{i \neq j} \alpha_i \alpha_j, \quad s_3 = \prod_{i=1}^{3} \alpha_i.$$

By Vieta's formulas we get $s_1 = 0$, $s_2 = 0$, and $s_3 = 2$.

We will show that $1, \alpha, \alpha^2$ is an integral basis of K. By Corollary 2.42, we have $\Delta[1, \alpha, \alpha^2] = -108 = -2^2 3^3$. Note that the largest integer N such that $N^2 |\Delta[1, \alpha, \alpha^2]$ is 6. Hence, it is sufficient to prove that for $a_0, a_1, a_2 \in \{0, 1, 2, 3, 4, 5\}$

$$\theta = \frac{1}{6} \sum_{j=0}^{2} a_j \alpha^j$$

is an algebraic integer only if $a_j = 0$ for all j = 0, 1, 2.

If θ is an algebraic integer, then

$$\begin{split} N(\theta) &= \prod_{i=1}^{3} \sigma_{i}(\theta) = \frac{1}{6^{3}} \prod_{i=1}^{3} (a_{0} + a_{1}\alpha_{i} + a_{2}\alpha_{i}^{2}) \\ &= \frac{1}{6^{3}} \{a_{0}^{3} + a_{1}^{3}s_{3} + a_{2}^{3}s_{3}^{2} + a_{0}^{2}a_{1}s_{1} + a_{0}a_{1}^{2}s_{2} + a_{0}^{2}a_{2}(s_{1}^{2} - 2s_{2}) \\ &+ a_{0}a_{2}^{2}(s_{2}^{2} - s_{1}s_{3}) + a_{1}^{2}a_{2}s_{1}s_{3} + a_{1}a_{2}^{2}s_{2}s_{3} + a_{0}a_{1}a_{2}(s_{2}^{2} - 3s_{3})\} \\ &= \frac{a_{0}^{3} + 2a_{1}^{3} + 4a_{2}^{3} - 6a_{0}a_{1}a_{2}}{6^{3}} \end{split}$$

is also an integer. One can check that $a_0^3 + 2a_1^3 + 4a_2^3 - 6a_0a_1a_2$ is divisible by 6^3 only if $a_0 = a_1 = a_2 = 0$, hence $1, \alpha, \alpha^2$ is an integral basis of K.

(b) For $K = \mathbb{Q}(2^{\frac{1}{3}})$ we have d = 3, r = 3, and s = 0. We calculate the Minkowski bound:

$$c = \frac{d!}{d^d}\sqrt{|\Delta|} = \frac{3!}{3^3}\sqrt{108} \approx 2.309.$$

The only rational prime $\leq c$ is 2. Note that $\langle 2 \rangle = \mathfrak{p}^3$, where $\mathfrak{p} = \langle 2^{\frac{1}{3}} \rangle$. As \mathfrak{p} is principal, $\operatorname{Cl}(K)$ is trivial.

Problem 2

(a) Let $f(x) = x^{p-1} + x^{p-2} + \dots + 1$. Since

$$(x-1)f(x) = x^{p} - 1 = (x-1)(x-\zeta)(x-\zeta^{2})\cdots(x-\zeta^{p-1}),$$

we obtain the identity $f(x) = (x - \zeta)(x - \zeta^2) \cdots (x - \zeta^{p-1})$. It follows that

$$N(1-\zeta) = \prod_{i=1}^{p-1} (1-\zeta^i) = f(1) = p.$$

Thus, $\langle 1-\zeta \rangle$ is a prime ideal as $N(1-\zeta)$ is prime.

(b) Note that f(x) is the minimal polynomial of ζ and we have

$$f(x) \equiv (x-1)^{p-1} \pmod{p}.$$

By Dedekind's criterion (Theorem 4.73), $\langle p \rangle = \mathfrak{p}^{p-1}$, where $\mathfrak{p} = \langle 1 - \zeta, p \rangle$. Indeed, we have $\mathfrak{p} = \langle 1 - \zeta \rangle$ as $1 - \zeta | f(1) = p$. It follows from $\langle p \rangle = \langle 1 - \zeta \rangle^{p-1} = \langle (1 - \zeta)^{p-1} \rangle$ that there exists $u \in O_F^{\times}$ such that $p = u(1 - \zeta)^{p-1}$.

(c) Let G be the group of roots of unity in O_F . As the degree of $e^{\frac{2\pi i}{n}}$ goes to infinity as $n \to \infty$, G is a finite abelian group. Let $e^{\frac{2\pi m_1 i}{n_1}}, \cdots, e^{\frac{2\pi m_k i}{n_k}}$, where $gcd(m_i, n_i) = 1$, be generators of G. Observe that these generate $e^{\frac{2\pi i}{N}}$, where N is the largest common multiple of n_1, \cdots, n_k . It follows that G is indeed a cyclic group. Let $\zeta_N = e^{\frac{2\pi i}{N}}$ be a generator of G. Since ζ_N generates ζ , we have p|N. On the other hand, it follows from $\zeta_N \in O_F$ that $\mathbb{Q}(\zeta_N) = \mathbb{Q}(\zeta)$, hence $\phi(N) = [\mathbb{Q}(\zeta_N) : \mathbb{Q}] = [\mathbb{Q}(\zeta) : \mathbb{Q}] = \phi(p) = p - 1$. Elementary number theory implies that N is either p or 2p. Therefore, $G = \{\pm \zeta^s : s \in \mathbb{Z}\}$.

(d) The argument in (b) still works even if we replace ζ with ζ^r for r coprime to p. We thus have $\langle p \rangle = \langle (1 - \zeta^r)^{p-1} \rangle = \langle (1 - \zeta^s)^{p-1} \rangle$ for r, s coprime to p. It follows that $\langle 1 - \zeta^r \rangle = \langle 1 - \zeta^s \rangle$, hence there exists $u \in O_F^{\times}$ such that $1 - \zeta^r = u(1 - \zeta^s)$.

Problem 3

Let s_1, \dots, s_n be the elementary symmetric polynomials in n variables. Let $\sigma_1, \dots, \sigma_n$ be the complex embeddings and denote $\alpha_i = \sigma_i(\alpha)$ for $i = 1, \dots, n$. If $|\alpha_i| \leq N$ for all i, then $|s_k(\alpha_1, \dots, \alpha_n)| \leq 2^n N^n$ for any $1 \leq k \leq n$. In particular, there are only finitely many integral polynomials $x^n - s_1 x^{n-1} + \dots + (-1)^n s_n$ satisfying this bound. It implies that there are only finitely many α with conjugates of bounded complex absolute value.