Exercise sheet 1

- 1. Let G be a Hausdorff topological group, and H < G a subgroup.
 - (a) Show that if H is closed and has finite index in G, then H is open.
 - (b) Show that if H is abelian, then so is its closure \overline{H} .
 - (c) Recall that a group G is *solvable* if there exists a chain $G \triangleright G_1 \triangleright G_2 \ldots G_n \triangleright (e) = G_{n+1}$ with $G_{i+1} \triangleleft G_i$ and G_i/G_{i+1} abelian for all $0 \leq i \leq n$. Show that if G is solvable then one can also find a chain of subgroups G_i as above with G_i closed in G.
- 2. (a) Find an injection $O(1,1) \hookrightarrow O(p,q)$ for $p,q \ge 1$.
 - (b) Show that the topological group O(p,q) for $p,q \ge 1$ is not compact.
 - (c) Show that O(1,1) has four connected components.
- 3. (a) Let X be a *compact* Hausdorff space. Show that $(\text{Homeo}(X), \circ)$ is a topological group when endowed with the compact-open topology.
 - (b) The objective of this exercise is to show that (Homeo(X), ○) will not necessarily be a topological group if X is only locally compact.
 Consider the "middle thirds" Cantor set

$$C = \left\{ \sum_{n=1}^{\infty} \varepsilon_n 3^{-n} : \varepsilon_n \in \{0, 2\} \text{ for each } n \in \mathbb{N} \right\} \subset [0, 1]$$

in the unit interval. We define the sets $U_n = C \cap [0, 3^{-n}]$ and $V_n = C \cap [1 - 3^{-n}, 1]$. Further we construct a sequence of homeomorphisms $h_n \in \text{Homeo}(C)$ as follows:

- $h_n(x) = x$ for all $x \in C \setminus (U_n \cup V_n)$,
- $h_n(0) = 0$,
- $h_n(U_{n+1}) = U_n$,
- $h_n(U_n \smallsetminus U_{n+1}) = V_{n+1},$
- $h_n(V_n) = V_n \smallsetminus V_{n+1}$.

These restrict to homeomorphisms $h_n|_X$ on $X := C \setminus \{0\}$.

Show that the sequence $(h_n|_X)_{n\in\mathbb{N}} \subset \operatorname{Homeo}(X)$ converges to the identity on X but the sequence $((h_n|_X)^{-1})_{n\in\mathbb{N}} \subset \operatorname{Homeo}(X)$ of their inverses does not! Remark: However, if X is locally compact and *locally connected* then $\operatorname{Homeo}(X)$ is a topological group.

- 4. Show that if M is a manifold of dimension at least one, then Homeo(M) is not locally compact.
- 5. Let (X, d) be a proper metric space. Recall that the isometry group of X is defined as

$$Iso(X) = \{ f \in Homeo(X) : d(f(x), f(y)) = d(x, y) \text{ for all } x, y \in X \}.$$

- (a) Show that $Iso(X) \subset Homeo(X)$ is locally compact with respect to the compactopen topology.
- (b) Show that if additionally X is compact, then Iso(X) is compact.

Hint: Use the fact that the compact-open topology is induced by the metric of uniform-convergence and apply Arzelà–Ascoli's theorem.