Introduction to Lie groups

Exercise sheet 3

- 1. Let H < G be a subgroup of a topological group. Show that the action $G \times G/H \rightarrow G/H$ is continuous.
- 2. In the setting of Example 2.44 (1), show that if $1 \leq k \leq n-1$ then $SO(n, \mathbb{R})$ acts transitively on GO_k .
- 3. In the setting of Example 2.44 (2), let $P := P_{(1,\dots,n-1)}$ be the subgroup of $\operatorname{GL}(n,\mathbb{R})$ of upper triangular matrices. Show that $\operatorname{GL}(n,\mathbb{R})/P$ is compact and deduce that $\operatorname{GL}(n,\mathbb{R})/P_d$ is compact as well.
- 4. $\mathrm{SL}(2,\mathbb{R})$ acts transitively on $\mathbb{R}^2\smallsetminus\{0\}$ and the orbit map

$$\operatorname{SL}(2,\mathbb{R})/N \to \mathbb{R}^2 \smallsetminus \{0\}, \quad gN \mapsto g(e_1),$$

where $N = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{R} \right\}$ is an SL(2, \mathbb{R})-equivariant homeomorphism. Using this show that there is an SL(2, \mathbb{R})-invariant regular Borel measure on SL(2, \mathbb{R})/N.

5. $SL(2,\mathbb{R})$ acts transitively on the projective line $\mathbb{P}^1(\mathbb{R})$ and let

$$B = \operatorname{Stab}(\mathbb{R}e_1) = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a \in \mathbb{R}^{\times}, b \in \mathbb{R} \right\}.$$

Show that on $SL(2, \mathbb{R})/B$ there is no $SL(2, \mathbb{R})$ -invariant regular Borel measure.