Exercise sheet 4

- 1. Let T_{ℓ} , $\ell \ge 3$, be the ℓ -regular tree together with the combinatorial distance d. Show that $\text{Iso}(T_{\ell}, d)$ is not a Lie group.
- 2. Let G be a Lie group, H < G a subgroup that is also a regular submanifold.
 - (a) Show that H is a Lie group.
 - (b) Prove that H is a closed subgroup of G.
- 3. We consider the determinant function det : $GL(n, \mathbb{R}) \to \mathbb{R}^*$. Show that its differential at the identity matrix I is the trace function

$$D_I \det = \mathrm{tr.}$$

4. Let M be a smooth n-dimensional manifold and $p \in M$. Show that if (U, φ) is any chart at p with $\varphi(p) = 0$, then the map

$$\mathbb{R}^n \to T_p M, \quad v \mapsto (f \mapsto D_0(f \circ \varphi^{-1})(v))$$

is a vector space isomorphism.

- 5. Let M be a smooth manifold and $p \in M$. Show that for all open sets $U \subseteq M$ with $p \in U$ and every $g \in \mathcal{C}^{\infty}(U)$, there is $f \in \mathcal{C}^{\infty}(M)$ such that (U, g) and (M, f) define the same germ at p.
- 6. We have seen in class that if $\varphi \colon M \to M'$ is a diffeomorphism, then $\operatorname{Vect}^{\infty}(M) \to \operatorname{Vect}^{\infty}(M'), X \mapsto \varphi_*(X)$ is a Lie algebra isomorphism. Give a formula for $\varphi_*(X)$ in terms of derivatives of φ .