Exercise sheet 6

- 1. Use Proposition 3.38 (3) to show that $\exp_{\mathrm{GL}(n,\mathbb{R})}(tA) = \exp(tA)$ for all $t \in \mathbb{R}$ and $A \in \mathfrak{gl}(n,\mathbb{R}) = \operatorname{Mat}_{n,n}(\mathbb{R})$, where Exp denotes the matrix exponential.
- 2. Show that $\text{Exp}: \mathfrak{u}(n) \to U(n)$ is surjective.

Hint: Combine the fact that every $A \in U(n)$ is diagonalizable with the formula $g \operatorname{Exp}(X) g^{-1} = \operatorname{Exp}(gXg^{-1})$, which is valid for all $X \in \operatorname{Mat}_{n,n}(\mathbb{C})$ and $g \in \operatorname{GL}(n, \mathbb{C})$.

3. Show that Exp: $\mathfrak{gl}(n,\mathbb{C}) \to \operatorname{GL}(n,\mathbb{C})$ is surjective.

Hint: Use a similar argument as in Exercise 2 and the Jordan normal form.

- 4. Let V be a finite dimensional real vector space and $\Gamma < V$ a discrete subgroup. Show that there exist $\gamma_1, \ldots, \gamma_r \in \Gamma$, linearly independent in V such that $\Gamma = \mathbb{Z}\gamma_1 + \ldots + \mathbb{Z}\gamma_r$.
- 5. Show that every connected abelian Lie group G is isomorphic as Lie groups to $\mathbb{T}^a \times \mathbb{R}^{n-a}$ for some $a \in \{0, \ldots, n\}$, where $n = \dim G$ and $\mathbb{T} \cong \mathbb{R}/\mathbb{Z}$.
- 6. Let G be a Lie group. Show that there is an open neighborhood of e which does not contain any non-trivial subgroup of G.