4.46.

Introduction to Lie groups

- 1. Read pages 4-37 to 4-39 and verify that everything works as stated.
- 2. Let G be a connected Lie group with Lie algebra \mathfrak{g} and Killing form $K_{\mathfrak{g}}$. Show that for all $X, Y \in \mathfrak{g}$ and $g \in G$

$$K_{\mathfrak{g}}(\mathrm{Ad}(g)X, \mathrm{Ad}(g)Y) = K_{\mathfrak{g}}(X, Y),$$

where $\operatorname{Ad}: G \to \operatorname{GL}(\mathfrak{g})$ is the adjoint representation of G. Hint: Compute the derivative of $\Phi(t) := K_{\mathfrak{g}}(\operatorname{Ad}(\exp tZ)X, \operatorname{Ad}(\exp tZ)Y)$ and use Proposition

- 3. Let \mathfrak{g} be a real Lie algebra.
 - (a) Show that under the inclusion $\mathfrak{g} \hookrightarrow \mathfrak{g}_{\mathbb{C}} = \mathfrak{g} + i\mathfrak{g}$ we have that

$$K_{\mathfrak{g}} = K_{\mathfrak{g}_{\mathbb{C}}|_{\mathfrak{g} \times \mathfrak{g}}}.$$

- (b) Show that $K_{\mathfrak{g}_{\mathbb{C}}|_{\mathfrak{g}_{\mathbb{C}}^{(1)} \times \mathfrak{g}_{\mathbb{C}}^{(1)}}} = 0$ if and only if $K_{\mathfrak{g}|_{\mathfrak{g}^{(1)} \times \mathfrak{g}^{(1)}}} = 0$. Hint: Use that $\mathfrak{g}_{\mathbb{C}}^{(1)} = \mathfrak{g}^{(1)} + i\mathfrak{g}^{(1)}$.
- 4. Compute the Killing form of the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$.
- 5. Consider the three-dimensional Heisenberg group

$$H = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}.$$

Note that the center of H is

$$Z(H) = \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : z \in \mathbb{R} \right\}.$$

Let D < Z(H) be the following discrete subgroup

$$D := \mathrm{SL}_{3}(\mathbb{Z}) \cap Z(H) = \left\{ \begin{pmatrix} 1 & 0 & n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : n \in \mathbb{Z} \right\}.$$

Check that G := H/D is a connected, solvable Lie group and show that G does not admit a smooth, injective homomorphism into GL(V) for any finite-dimensional \mathbb{C} -vector space V.

- 6. Show the following exceptional isomorphisms of Lie algebras.
 - (a) Show that $\mathfrak{so}(6,\mathbb{C}) \cong \mathfrak{sl}(4,\mathbb{C})$. Hint: If dim V = 4 then dim $\Lambda^2 V = 6$.
 - (b) Show that $\mathfrak{so}(4,\mathbb{C}) \cong \mathfrak{sl}(2,\mathbb{C}) \oplus \mathfrak{sl}(2,\mathbb{C})$.
 - (c) Show that $\mathfrak{so}(3,\mathbb{C}) \cong \mathfrak{sl}(2,\mathbb{C})$.
 - (d) Show that $\mathfrak{sp}(2,\mathbb{C}) \cong \mathfrak{sl}(2,\mathbb{C})$ and $\mathfrak{sp}(4,\mathbb{C}) \cong \mathfrak{so}(5,\mathbb{C})$.
- 7. The goal of this exercise is to show that the spin group $SU(2, \mathbb{C})$ is the universal covering group of the rotation group $SO(3, \mathbb{R})$. Consider

$$\mathrm{SU}(2,\mathbb{C}) := \left\{ g \in \mathrm{SL}(2,\mathbb{C}) : g^*g = I \right\} = \left\{ \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \in \mathrm{SL}(2,\mathbb{C}) \right\}$$

and its Lie algebra

$$\mathfrak{su}(2,\mathbb{C}) = \{ X \in \mathfrak{sl}(2,\mathbb{C}) : X^* + X = 0 \} = \left\{ \begin{pmatrix} ia & -\bar{z} \\ z & -ia \end{pmatrix} : a \in \mathbb{R}, z \in \mathbb{C} \right\}.$$

(a) Construct a Lie group homomorphism $\varphi : \mathrm{SU}(2, \mathbb{C}) \to \mathrm{SO}(3, \mathbb{R})$ whose kernel is $\{\pm I\}$.

Hint: Use the adjoint representation of $SU(2, \mathbb{C})$ on $\mathfrak{su}(2, \mathbb{C})$ and show that

$$b(X,Y):=-\frac{1}{2}\mathrm{tr}(XY)$$

defines a positive definite symmetric bilinear form on $\mathfrak{su}(2,\mathbb{C})$ considered as a real vector space.

- (b) Show that $d_I \varphi : \mathfrak{su}(2, \mathbb{C}) \to \mathfrak{so}(3, \mathbb{R})$ is a Lie algebra isomorphism and deduce that φ is a covering map.
- (c) Show that $SU(2, \mathbb{C})$ is homeomorphic to the 3-sphere \mathbb{S}^3 and deduce that $SU(2, \mathbb{C})$ is simply connected. Show that $SO(3, \mathbb{R})$ is homeomorphic to the three-dimensional real projective space \mathbb{RP}^3 . What is the fundamental group of $SO(3, \mathbb{R})$?
- (d) Are there any other Lie groups whose Lie algebra is isomorphic to $\mathfrak{su}(2,\mathbb{C})$? Hint: Analyze the discrete normal subgroups of $\mathrm{SU}(2,\mathbb{C})$.