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at a point p = ( x o ,  yo )  which is a simple extremum or saddle point of the 
function f (x, y ) .  The level curves f (x, y) = constant are the dotted lines 
orthogonal to the integral curves. If p is a singularity of a general vector field, 
the pattern can be more complicated; possibilities are shown in (c) and (d). 
Interesting relations between the topological nature of the surface and the 
possible types of singularities possessed by a vector field on it were dis- 
covered by Poincare, Hopf, and others (see Milnor [2]). A consequence of 
these relations is the fact already mentioned that a vector field on S2-in fact 
on any closed orientable surface except T2-must have at least one singular 
point. 

Another important question about a vector field X on M is whether or 
not it has closed integral curves-diffeomorphic to the circle S' (see 
Exercise 3). This can be of importance, for instance, in applications to dyna- 
mics. In these applications one considers the points of a manifold as corre- 
sponding to, or parametrizing, the states of a dynamical system. For 
example, if the system consists of the earth, sun, and moon, then in a fixed 
coordinate system the positions of the three objects can be characterized by 
nine numbers (three sets of coordinates) and their velocities, or momenta, by 
nine more (the components of three vectors). Thus each state or 
configuration corresponds to a point on a manifold M of dimension 18. The 
laws of motion can be expressed as a system of ordinary differential equa- 
tions or vector field X on M ,  and the integral curves correspond to the 
motions beginning from various initial states. A closed integral curve corre- 
sponds to a periodic motion, like that of the planets. This approach to 
mechanics was extensively studied by PoincarCt and Birkhoff, and is still an 
active area of research (see Smale [2]). It has led to many interesting 
questions about vector fields and curves on manifolds. For example, it was 
very recently shown by Schweitzer [l], that there exist everywhere regular 
vector fields on S 3  without any closed integral curves-contrary to a long 
standing conjecture. Classical mechanics in the framework of manifold 
theory is very clearly set forth by Godbillon [l]. An excellent recent book 
on differential equations and dynamical systems is Hirsch and Smale [l]. 

(5.5) Definition A vector field X on M is said to be complere if it generates 
a (global) action of R on M ,  that is, if W = R x M .  

This is clearly the most desirable case and we find i t  very convenient to 
have sufficient conditions for completeness. One of them is an immediate 
corollary of Lemma 5.1. 

(5.6) Corollary If M i s  a compact manifold, then every vectorfield X on M 
is complete. 
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To see that this is so we take K = M in the lemma and note that in this 
case ~ ( p )  = - cc and p ( p )  = + co, that is, I ( p )  = R, for every p E M .  

This gives one important case in which we may be sure that a vector field 
is complete. A second case, which we will study in some detail, is a left- 
invariant vector field on a Lie group, as is shown by the corollary to the 
theorem which follows. 

(5.7) Theorem Let X be a C" -vecforjeld on a manifold M and F :  M -, M 
u dijieonzorphisni. Lef  0(f, p )  denote the C"' map 8 :  W -, M dejned by X .  
Then X is inilariant under F if and only tf F (O ( t ,  p ) )  = 8(t, F (p))  whenever 
both sides are dejned. 

Proof Suppose that X is invariant under F .  If 8,: I ( p )  + M is the inte- 
gral curve of X with 0,(0) = p .  then the diffeomorphism F takes it to an 
integral curve F(d,(t)) of the vector field F , (X) .  Since F J X )  = X and 
F(O,(O)) = F(p), from uniqueness of  integral curves we conclude that 
F(O,(r)) = O ( f ,  F (p ) ) .  This proves the "only i f "  part of the theorem. 

Now suppose that F(O(f, p ) )  = 8(f, F (p) )  and prove that 
F,(X,) = XF ( , ) .  This could be done directly from expression (3.2) for the 
infinitesimal generator X, but we shall proceed in a slightly different way. 
Let O , ( r )  = 0(t, p )  and let d/dt be the natural basis of T',(R), the tangent space 
to R at t = 0. Then, by definition, X, = d,(O) = 8,,(d/dt) and applying the 
isomorphism F,: T , ( M )  --* TF(,)(M) to this definition we have 

The second equality is the chain rule for the composition of mappings 
applied to 0,: R -, M and F :  M 4 M .  The third equality uses the hypothesis 
that F CJ a ,,([) = OF ( , , ) ( f ) .  I 

We remark that in the notation of Section 3 this theorem could be 
stated: F J X )  = X ifund only i f ' O ,  u F = F 0, on V,. 

(5.8) Corollary A If$-invariant vecrorjeld on a Lie group G is complete. 

Proof Let X be such a vector field. There is a neighborhood V of e and 
a 6 > 0 such that 8(t ,  g )  is defined on I ,  x V .  For h E G, let Lh denote the left 
translation by h. I f  we apply Theorem 5.7 with F = Lh, then 8(f, L h g )  = 
LhO(t, g), which shows that 8 is defined'on I ,  x Lh(l/) ,  a neighborhood of 
(0,h)  in R x G .  I t  follows that for every h E G there is a neighborhood 
U = L h ( V )  such that I ,  x U c W ,  the domain of 8 with the same 6 > 0 that 
we first obtained for V ,  that is, 6 is fixed and independent of h. By the same 
argument as in the compact case we obtain a contradiction if we assume for 
any y E M that either a(g) or j(g)  is finite. Therefore W = R x M and X is 
complete. I 
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We now make use of a vector field X on M to define a method of 
differentiation which has many applications in manifold theory. We have 
already defined the derivative of a function fg C" (M )  at a point p in the 
direction of X;  it is just X,,f This generalizes from R" to an arbitrary 
manifold the notion of directional derivative of a function. However, if we 
wish to determine the rate of change of a vector field Y at P E  M in some 
direction X,, we have trouble as soon as we leave R", for it is only in R" that 
we are able to compare the value of Y at p with its value at nearby points, 
which we must do to compute a rate of change. Now, given a vector field X 
on M ,  there is an associated one-parameter group 0: W -+ M generated by 
X. For each t E R we know (Theorem 3.12) that 0,: V ,  + V-f is a diffeomor- 
phism (with inverse 0-,) of the open set v ,  provided V ,  is not empty. In 
particular for each P E  M there is a neighborhood V and a 6 > 0 such that 
V c V ,  for I t I < 6. The isomorphism O,*: T ,(M) + G,(,,,(M) and its inverse 
allow us to compare the values of vector fields at these two points. 

Indeed, suppose Y is a second Cm-vector field on M .  We may use this 
idea to compute for each p the rate of change of Y in the direction of X, that 
is, along the integral curve of the vector field X passing through p .  We shall 
denote this rate of change by L ,  Y ;  it is itself a C"-vector field. 

(7.6) Definition The vector field L, Y ,  called the Lie derivative of X with 
respect to Y is defined at each P E  M by either of the following limits. 

The second definition is obtained from the first by replacing t by - r .  We 
interpret the first expression as follows: Apply to I&,, ,) E G(,. ,)(M) the iso- 
morphism O - f * ,  taking Gcf. ,,)(M) to T,(M). Then in T',(M) take the differ- 
ence of this vector and Y,, multiply by the scalar l/r, and pass to the limit as 
t + 0. This limit is a vector (L ,  Y), E T , ( M ) ;  if it exists at all, that is! The 
existence as well as the fact that the vector field so defined is C" may be 
verified by writing the formula above in local coordinates (Exercise 6). We 
shall give another characterization of L ,  Y which requires a modification of 
Lemma 11.4.3, following Kobayashi and Nomizu [l, p. 151. 

(7.7) Let X be a C"-vectorjeld on M and 14 be rhe corresponding 
map of W c R x M onto M .  Given p E M and f c  C"(U),  U an open set 
containing p, we choose 6 > 0 and a neighborhood V of p in U such that 

Lemma 
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B (1 ,  x V )  c U .  The11 there is u C" fiirictiori g(q ,  t )  drjinnl on V x I ,  such 
that .for q E V arid t E I, wr haw 

. r (~,(q))  =.rm + ~ ( 4 ,  r)  ~~1~~ x,f= g(q , o) .  

Proof There is a neighborhood V of p and a 6 > 0 such that 8 , (p )  = 
O(r ,  p )  is defined and C" on I ,  x V and maps 1, x V into U according to 
Theorem 4.2. The function r ( t ,  y)  = f(B,(y)) - f ( q )  is C" on I, x V and 
r(0, q )  = 0. We denote by r(f ,  q )  its derivative with respect to t .  We define 
g(q ,  t)-for each fixed q-by the formula 

1 

g(q ,  t )  = 1 i.(fS, y) ds. 
'0 

This function is also C' on I ,  x V (verified by use of local coordinates and 
properties of the integral). By the fundamental theorem of calculus, 

1 

tS(q, t )  = 1 i ( r s ,  q ) t  ( i s  = r ( t ,  q )  - r ( ~ ,  q) = r( t ,  4). 
'0 

Using the definition of r ,  this becomes 

.r(0,cq)) = (Y) + Q A ~ ,  t ) .  

On the other hand, by the definition ( 3 .2 )  of the infinitesimal generator of 8 , 

I 1 
g(q ,  0 )  = lim g(q ,  r )  = lim r(i, q )  = lim [ . f(W q)) -f(q)] = X , . f  I 

r-0 r-0 r -0 

We use the lemma to prove the following theorem: 

(7.8) Theorem I f X  uiid Y are C '-wc ror , fi e ld . s on M ,  then 

Lx  Y = [X. Y ] .  
Proof By definition 

This differential quotient and that of the following expression, whose limit is 
the derivative of a C' function of t, are equal for all 0 < 1 t I < 6;  hence 
equal in the limit 

1 
(Lx  V , f=  lim P J - -  &-,cp,(.f0 & ) I .  

r-0 

Using Lemma 7.7 and denoting y(q, t )  by gr, we have 
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Then replace t by -t and rearrange terms giving 

1 
(Lx Y)p  = lim j [(Yf)(4(P)) - (Yf)(P)l - lim Kdp)gr . 

1-0 1-0 

Now, using both the formula (3.2) withfreplaced by Yfand At by t, and the 
fact that go = g(q, 0) = Xf(q), we obtain in the limit 

(L, V,f= X,(Yf) - Y,(Xf) = [X, YIP& 

This completes the proof of the theorem; it also shows that L, Y is C". I 

(7.9) Theorem Let F: N --f M be a C" mapping and suppose that X1, X2 
and Y,, Y, are vector fields on N, M, respectively, which are F-related, that is, 
for i = 1, 2, F,(X,) = y i .  Then [X,, X,] and [Y,, Y2] are F-related, that i s, 

Proof Before proving the theorem we note the following necessary and 
sufficient condition for X on N and Y on M to be F-related: for any g which 
is C" on some open set I/ c M, 

(* 1 ( Y J o  F = X(g0 F) 
on F-'(V). This is essentially a restatement of the definition of F-related, for 
if q E  F-'(I/), then F,(X,)g = X,(g 0 F) = X(g 0 F)(q); and Y,,,)g is the 
value of the C" function Yg at F(q), that is, (( Yg) 0 F)(q). Thus the condition 
holds if and only if FJX,) = YF,,) for all q E M. 

Returning to the proof we considerfe Cm(V) ,  V c M, so that Y,fand 
Y2fe C m ( V )  also. Apply (*), first with g = Y,fand then with g = fgiving 
the equalities 

F*[Xl, X2l = [F*(Xl), F*(X2)1* 

[yl(y,f)l O F = Xl((Y2f) O F) = Xl[X,(fO F)1. 

([Yl, Y2 l f )  O F = [Xl, X2l(fO F ) ,  

Interchanging the roles of Y,, Y, and X,, X2 and subtracting, we obtain 

which according to (*) is equivalent to [X,, X,] and [ Y,, Y,] being F-related. 
I 

We now define the Lie algebra g of a Lie group G. 

(7.10) Corollary If G is a Lie group, then the lejl-invariant vectorjields on 
G form a Lie algebra g with the product [X, Y] and dim g = dim G. If 
F: G ,  -+ G2 is a homomorphism of Lie groups, F,: g1 -+ g, is a homomorphism 
of Lie algebras. 
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Proof Let a E G, and let X and Y be left-invariant vector fields. L, (left 
translation) is a diffeomorphism and La, X = X ,  L,, Y = Y .  Therefore 
L,,[X, Y] = [X, Y ]  by the theorem, so [X, Y] is Lainvariant for any a. 
Hence the subspace g of left-invariant vector fields is closed with respect to 
[X ,  Y ] .  Since each X E g is uniquely determined by X,, the mapping X .--i X, 
is an isomorphism of g and T ,(G ) as vector spaces. The last statement follows 
from Corollary 2.10 and Theorem 7.9. 1 
(7.11) Remark If H c G is a Lie subgroup, then Corollary 7.10 implies 
that i,&) is a subalgebra of 8. It consists of the elements of g tangent to W 
and its cosets gH ,  

(7.12) Theorem Let X and Y be complete C"'-vectorfields on a manifold M 
and let 0, a denote the corresponding actions of R on M .  Then 8 , o  a, = a, 0 8, 
for all s, t E R if and only if [ X ,  Y ]  = 0. 

Proof We first suppose that 8, G a, = a, 0 0, for all s, t E R .  Applying 
Theorem 5.7 to the diffeomorphism 8,: M -+ M ,  we see that Y is 
$,-invariant; in particular Of, Y = Y. This implies that 

[X, YJ  = L,Y = lim[Y - 0-,,Y] = 0. 

Next assume [X, Y] = 0, then from the previous theorem 
A i d 0  

0 = O,,[X, Y ]  = [@,,X, 01, Y] = [X, 81, Y]. 
From this we conclude that for any p E M and any f~ C"'(p) we have 

f 
= y ) ) p . f =  lim [(Of, Y ) p f -  Y ) p f l  

A 1 4 0  At 

so that d(O,, Y),fldt = 0 for every t ,  that is, (8$, Y ) p f i ~  constant. When 
t = 0 this constant function has the value YpfI therefore (Or, Y)J= Y,J 
Since p and , f ~  P ( p )  were arbitrary, it follows that $,, Y = Y and from 
Theorem 5.7 we conclude that for each t E R 

0, Q, = a, 0 8, . 1 

Exercises 

1. Show that X(M) is infinite-dimensional over R but locally finitely gen- 
erated over C"(M) ,  that is, each p E M has a neighborhood V on which 
there is a finite set of vector fields which generate X(M) as a C m(V) 
module. 

2. Let X, Y EX(M)  andj; . q ~  C" (M)  and prove that 

[ . r x t  gy1 = M X ,  YI + f f X @ ) Y  - @fYf)X. 


