## Solution 1

- 1. Let G be a Hausdorff topological group, and H < G a subgroup.
  - (a) Show that if H is closed and has finite index in G, then H is open.
  - (b) Show that if H is abelian, then so is its closure H.
  - (c) Recall that a group G is *solvable* if there exists a chain  $G \triangleright G_1 \triangleright G_2 \ldots G_n \triangleright (e) = G_{n+1}$  with  $G_{i+1} \triangleleft G_i$  and  $G_i/G_{i+1}$  abelian for all  $0 \leq i \leq n$ . Show that if G is solvable then one can also find a chain of subgroups  $G_i$  as above with  $G_i$  closed in G.
- 2. (a) Find an injection  $O(1,1) \hookrightarrow O(p,q)$  for  $p,q \ge 1$ .
  - (b) Show that the topological group O(p,q) for  $p,q \ge 1$  is not compact.
  - (c) Show that O(1, 1) has four connected components.

Hints:

- (a) Use the definition of O(p,q) and block matrices.
- (b) Give an explicit unbounded sequence in O(1, 1).
- (c) Observe that SO(1,1) has index 2 in O(1,1) and 2 connected components using an explicit parametrization and its action on  $\mathbb{R}^2$ .
- 3. (a) Let X be a *compact* Hausdorff space. Show that  $(\text{Homeo}(X), \circ)$  is a topological group when endowed with the compact-open topology.
  - (b) The objective of this exercise is to show that (Homeo(X), ○) will not necessarily be a topological group if X is only locally compact.
    Consider the "middle thirds" Cantor set

$$C = \left\{ \sum_{n=1}^{\infty} \varepsilon_n 3^{-n} : \varepsilon_n \in \{0, 2\} \text{ for each } n \in \mathbb{N} \right\} \subset [0, 1]$$

in the unit interval. We define the sets  $U_n = C \cap [0, 3^{-n}]$  and  $V_n = C \cap [1 - 3^{-n}, 1]$ . Further we construct a sequence of homeomorphisms  $h_n \in \text{Homeo}(C)$  as follows:

- $h_n(x) = x$  for all  $x \in C \setminus (U_n \cup V_n)$ ,
- $h_n(0) = 0$ ,
- $h_n(U_{n+1}) = U_n$ ,
- $h_n(U_n \smallsetminus U_{n+1}) = V_{n+1}$ ,
- $h_n(V_n) = V_n \smallsetminus V_{n+1}$ .

These restrict to homeomorphisms  $h_n|_X$  on  $X := C \setminus \{0\}$ .

Show that the sequence  $(h_n|_X)_{n\in\mathbb{N}} \subset \operatorname{Homeo}(X)$  converges to the identity on X but the sequence  $((h_n|_X)^{-1})_{n\in\mathbb{N}} \subset \operatorname{Homeo}(X)$  of their inverses does not! Remark: However, if X is locally compact and *locally connected* then  $\operatorname{Homeo}(X)$  is a topological group.

Solution:

- (a) Denote by m: Homeo $(X) \times$  Homeo $(X) \rightarrow$  Homeo(X) the composition  $m(f,g) = f \circ g$  and by i: Homeo $(X) \rightarrow$  Homeo(X) the inversion  $i(f) = f^{-1}$ . We need to see that m and i are continuous.
  - i. m is continuous: We want to show that m is continuous at any tuple  $(f,g) \in \operatorname{Homeo}(X) \times \operatorname{Homeo}(X)$ . Thus let  $S(K,U) \ni f \circ g$  be a subbasis neighborhood of  $f \circ g$ , i.e.  $K \subset X$  is compact and  $U \subset X$  is open such that  $f(g(K)) \subset U$ . Observe that g(K) is compact and is contained in  $f^{-1}(U)$  which is open. Because X is (locally) compact we may find an open set  $V \subset X$  with compact closure  $\overline{V}$  such that

$$g(K) \subset V \subset \overline{V} \subset f^{-1}(U).$$

It is now easy to verify that  $W := S(\overline{V}, U) \times S(K, V)$  is an open neighborhood of (f, g) such that  $m(W) \subset S(K, U)$ . Indeed, (f, g) is by construction of V contained in W and for any  $(h_1, h_2) \in W$  we get

$$h_2(K) \subset V \subset \overline{V} \subset h_1^{-1}(U)$$

Hence, m is continuous at every point of  $Homeo(X) \times Homeo(X)$ .

ii. i is continuous: Let  $f\in \operatorname{Homeo}(X),\, K\subset X$  compact and  $U\subset X$  open. Then

$$\begin{split} i(f) \in S(K,U) & \iff f^{-1}(K) \subset U \iff K \subset f(U) \\ & \iff f(U^c) = f(U)^c \subset K^c \iff f \in S(U^c,K^c). \end{split}$$

Observe that  $U^c$  is compact as a closed subset of the compact space X and that  $K^c$  is open as the complement of a (compact) closed set. This shows that  $i^{-1}(S(K,U)) = S(U^c, K^c)$  for every element S(K,U) of a subbasis for the compact-open topology on Homeo(X), whence i is continuous.

(b) The following picture gives a pictorial description of what  $h_1$  does on the Cantor set C.



Since  $h_n(0) = 0$  we obtain indeed a homeomorphism  $h_n|_X \in \text{Homeo}(X)$  by restriction to  $X = C \setminus \{0\}$ . Let us first see that the sequence  $(h_n|_X)_{n \in \mathbb{N}}$ indeed converges to id  $\in$  Homeo(X). For that let S(K, U) be a subbasis neighborhood of id, i.e. K is a compact subset of X contained in some open set  $U \subset X$ . Therefore we can find an  $M \in \mathbb{N}$  such that  $U_M$  and K are disjoint. If  $1 \notin K$  then there is also an  $N \ge M$  such that  $V_n$  and K are disjoint. In this case  $h_n|_K$  is the identity and hence in S(K, U) for all  $n \ge N$ .

If  $1 \in K$  then there is an  $N \ge M$  such that  $V_N$  is contained in U. Consequently, we have

$$h_n(K \smallsetminus V_n) = K \smallsetminus V_n, \quad h_n(K \cap V_n) \subset V_n \subset V_N \subset U,$$

for all  $n \ge N$ .

In any case the sequence  $(h_n|_X)_{n\in\mathbb{N}}$  will be in S(K,U) for large enough n such that  $\lim_{n\to\infty} h_n|_X = \mathrm{id}$ . On the other hand  $h_n^{-1}(1) \in U_n$  for every  $n \in \mathbb{N}$  such that  $\lim_{n\to\infty} h_n^{-1}(1) = 0$ . Thus the sequence  $(h_n^{-1}|_X)_{n\in\mathbb{N}}$  certainly does not converge to id.

Remark: Note that we actually needed to remove 0 from C for this construction to work. In fact, the sequence  $h_n$  does not converge to id in Homeo(C): Let  $K = [0, 1/9] \cap C, U = [0, 1/2) \cap C$ . Then S(K, U) is again a neighborhood of id. However,  $U_n \subset K$  for every  $n \ge 2$  and  $V_{n+1} \subset U^c$  which implies that

$$h_n(U_n \smallsetminus U_{n+1}) \subset U^c,$$

i.e.  $h_n \notin S(K, U)$ .

4. Show that if M is a manifold of dimension at least one, then Homeo(M) is not locally compact.

Solution: We will prove that Homeo(M) is not locally compact for any compact manifold M. Note that we can think of M as a compact metric space (M, d) by Urysohn's metrization theorem. In the case when M is a smooth manifold this is even easier to see by endowing it with a Riemannian metric. This puts us now in the favorable position of being able to identify the compact-open topology on Homeo(X) with the topology of uniform convergence.

We denote by

$$d_{\infty}(f,g) := \sup\{d(f(x),g(x)) : x \in M\}$$

the metric of uniform convergence on  $\operatorname{Homeo}(M)$ . Further denote by  $B_f^{\infty}(r)$  the ball of radius r > 0 about a homeomorphism  $f \in \operatorname{Homeo}(M)$ . In order to show that  $\operatorname{Homeo}(M)$  is not locally compact we will construct in every  $\varepsilon > 0$  ball about the identity  $B_{\operatorname{id}}^{\infty}(\varepsilon)$  a sequence of homeomorphisms  $(f_k)_{k\in\mathbb{N}}$  with no convergent subsequence.

Let  $\varepsilon > 0$  and denote  $B = B_{id}^{\infty}(\varepsilon)$ . Further, let  $x_0 \in M$  and choose a coordinate chart  $\varphi : U \subset B_{\varepsilon/2}(x_0) \to \mathbb{R}^n$  centered at  $x_0$  (i.e.  $\varphi(x_0) = 0$ ) contained in the  $\varepsilon/2$ -ball  $B_{\varepsilon/2}(x_0)$  about  $x_0$  in M. Consider the homeomorphisms

$$\psi_k : \overline{B_1}(0) \to \overline{B_1}(0), x \mapsto \|x\|^k x$$

on the closed unit ball  $\overline{B_1}(0)$  in  $\mathbb{R}^n$  which fix  $0 \in \mathbb{R}^n$  and the boundary *n*-sphere pointwise. Note that the sequence  $(\psi_k)_{k \in \mathbb{N}}$  converges pointwise to

$$\psi_{\infty} = \begin{cases} x, & \text{if } x \in \partial B_1(0), \\ 0, & \text{if } x \in B_1(0). \end{cases}$$

Now, define

$$f_k(x) := \begin{cases} x, & \text{if } x \notin \varphi^{-1}(B_1(0)), \\ \varphi^{-1}(\psi_k(\varphi(x))), & \text{if } x \in \varphi^{-1}(B_1(0)). \end{cases}$$

It is easy to see that the maps  $f_k : M \to M$  are indeed homeomorphisms:  $f_k|_{\varphi^{-1}(\overline{B_1}(0))^c} = \operatorname{id} : \varphi^{-1}(\overline{B_1}(0))^c \to \varphi^{-1}(\overline{B_1}(0))^c$  is a homeomorphism,  $\varphi^{-1} \circ \psi_k \circ \varphi : \varphi^{-1}(\overline{B_1}(0)) \to \varphi^{-1}(\overline{B_1}(0))$  is a homeomorphism and both coincide on  $\varphi^{-1}(\partial B_1(0))$ . Further, the homeomorphisms  $f_k$  map the  $\varepsilon/2$ -ball  $B_{\varepsilon/2}(x_0)$  to itself and fix  $x_0$ . Therefore,

$$d(f_k(x), x) \leqslant d(f_k(x), \underbrace{f_k(x_0)}_{=x_0}) + d(x_0, x) < \varepsilon,$$

for every  $x \in B_{\varepsilon/2}(x_0)$ , and clearly  $f_k(x) = x$  for every  $x \notin B_{\varepsilon/2}(x_0)$ . Hence, the sequence  $(f_k)_{k\in\mathbb{N}}$  is in  $B_{\varepsilon}^{\infty}(\mathrm{id})$ .

However, the sequence  $(f_k)_{k \in \mathbb{N}}$  converges pointwise to

$$f_{\infty}(x) = \begin{cases} x, & \text{if } x \notin \varphi^{-1}(B_1(0)), \\ x_0, & \text{if } x \in \varphi^{-1}(B_1(0)), \end{cases}$$

If there were a subsequence  $(f_{k_l})_{l \in \mathbb{N}}$  converging to some  $f \in \text{Homeo}(M)$  uniformly then this sequence would also converge pointwise to f, i.e. f needs to coincide with  $f_{\infty}$ . But  $f_{\infty}$  is not even continuous which contradicts our assumption of  $f \in \text{Homeo}(M)$ . Therefore  $(f_k)_{k \in \mathbb{N}} \subset B^{\infty}_{\varepsilon}(\text{id})$  has no uniformly convergent subsequences.

5. Let (X, d) be a proper metric space. Recall that the isometry group of X is defined as

$$Iso(X) = \{ f \in Homeo(X) : d(f(x), f(y)) = d(x, y) \text{ for all } x, y \in X \}.$$

- (a) Show that  $Iso(X) \subset Homeo(X)$  is locally compact with respect to the compactopen topology.
- (b) Show that if additionally X is compact, then Iso(X) is compact.

Hint: Use the fact that the compact-open topology is induced by the metric of uniform-convergence and apply Arzelà–Ascoli's theorem.

Solution:

(a)

(b) The compact-open topology on Homeo(X) coincides with the topology induced by the metric of uniform convergence

$$d_{\infty}(f,g) = \sup\{d(f(x),g(x)) : x \in X\}.$$

Note that by Arzelà–Ascoli a family  $\mathcal{F} \subseteq C(X, X)$  of continuous maps is compact if and only if  $\mathcal{F}$  is equicontinuous, and  $\mathcal{F}$  is closed. Equicontinuity of  $\mathcal{F} := \operatorname{Iso}(X)$  is clear, because we are dealing with isometries. We check that  $\operatorname{Iso}(X)$  is closed. Let  $f \in C(X, X)$  and let  $(f_n)_{n \in \mathbb{N}} \subset \operatorname{Iso}(X)$  be a sequence converging to it. Let  $x, y \in X$  then

$$\begin{aligned} 0 &\leq |d(f(x), f(y)) - d(x, y)| \\ &= |d(f(x), f(y)) - d(f_n(x), f_n(y))| \\ &\leq |d(f(x), f(y)) - d(f_n(x), f(y))| + |d(f_n(x), f(y)) - d(f_n(x), f_n(y))| \\ &\leq d(f(x), f_n(x)) + d(f(y), f_n(y)) \to 0 \quad (n \to \infty). \end{aligned}$$

Hence, f is an isometry as wished for. Because f was arbitrary this shows that  $Iso(X) \subseteq C(X, X)$  is closed.