Introduction to Lie groups

Solution 3

1. Let H < G be a subgroup of a topological group. Show that the action $G \times G/H \rightarrow G/H$ is continuous.

Solution: Since multiplication and projection are continuous, the map

 $\varphi: G \times G \to G/H, \, (g,g') \mapsto gg'H$

is continuous. Furthermore, the map

$$\psi: G \times G \to G \times G/H, \, (g,g') \mapsto (g,g'H)$$

is open, since both the projection and the identity are open. Denote by a the action map $a: G \times G/H \to G/H$. If $U \subseteq G/H$ is open, then $a^{-1}(U) = \psi(\varphi^{-1}(U))$ is open.

2. In the setting of Example 2.44 (1), show that if $1 \leq k \leq n-1$ then $SO(n, \mathbb{R})$ acts transitively on GO_k .

Solution: Extend orthonormal vectors $v_1, \ldots, v_k \in GO_k$ to an orthonormal basis $v_1, \ldots, v_k, v_{k+1}, \ldots, v_n$ of \mathbb{R}^n . If $\det(v_1|\ldots|v_n) = -1$, replace v_n by $-v_n$. Then $M := (v_1 | \ldots | v_n)$ is in SO (n, \mathbb{R}) and hence $M^{-1}(v_1, \ldots, v_k) = (e_1, \ldots, e_k)$.

3. In the setting of Example 2.44 (2), let $P := P_{(1,\dots,n-1)}$ be the subgroup of $\operatorname{GL}(n,\mathbb{R})$ of upper triangular matrices. Show that $\operatorname{GL}(n,\mathbb{R})/P$ is compact and deduce that $\operatorname{GL}(n,\mathbb{R})/P_d$ is compact as well.

Solution: We show that $O(n, \mathbb{R})$ acts transitively on $\operatorname{Gr} := \operatorname{GL}(n, \mathbb{R})/P$. If $V = V_1 \subseteq \ldots \subseteq V_{n-1}$ is a complete flag in Gr , we can choose $0 \neq v_1 \in V_1$ of norm one. Then, choose $0 \neq v_2 \in V_2$ of norm one such that $V_2 = \langle v_1, v_2 \rangle$ and v_1 and v_2 are orthogonal. Continue to find (v_1, \ldots, v_n) orthonormal and such that $V_i = \langle v_1, \ldots, v_i \rangle$ for all $i = 1, \ldots, n$. Then $M := (v_1 \mid \ldots \mid v_n)$ is in $O(n, \mathbb{R})$ and $M^{-1}V = E$, where E is the standard flag. Thus the orbit map $O(n, \mathbb{R}) \to \operatorname{Gr}, M \mapsto ME$ is continuous and surjective, and since $O(n, \mathbb{R})$ is compact, so is Gr.

Every partial flag can be extended to a full flag, and the same argument shows that $O(n, \mathbb{R})$ acts transitively on Gr_d .

4. $SL(2,\mathbb{R})$ acts transitively on $\mathbb{R}^2 \setminus \{0\}$ and the orbit map

$$\operatorname{SL}(2,\mathbb{R})/N \to \mathbb{R}^2 \smallsetminus \{0\}, \quad gN \mapsto g(e_1),$$

where $N = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{R} \right\}$ is an $\mathrm{SL}(2, \mathbb{R})$ -equivariant homeomorphism. Using this show that there is an $\mathrm{SL}(2, \mathbb{R})$ -invariant regular Borel measure on $\mathrm{SL}(2, \mathbb{R})/N$. Solution: On $\mathbb{R}^2 \setminus \{0\}$ the restriction of the Lebesgue measure on \mathbb{R}^2 is an $\mathrm{SL}(2, \mathbb{R})$ invariant regular Borel measure λ . Thus we can define a measure on $\mathrm{SL}(2, \mathbb{R})/N$) by setting $\mu := h^* \lambda$, where h is the above homeomorphism. Because the homeomorphism is equivariant, μ will be invariant, since λ is.

5. $SL(2,\mathbb{R})$ acts transitively on the projective line $\mathbb{P}^1(\mathbb{R})$ and let

$$B = \operatorname{Stab}(\mathbb{R}e_1) = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a \in \mathbb{R}^{\times}, b \in \mathbb{R} \right\}.$$

Show that on $SL(2,\mathbb{R})/B$ there is no $SL(2,\mathbb{R})$ -invariant regular Borel measure.

Solution: Recall that $G = \mathrm{SL}(2,\mathbb{R})$ acts on the upper half plane $\mathbb{H} = \{z \in \mathbb{C} \mid \mathrm{Im} z > 0\} \subset \widehat{\mathbb{C}}$ and its boundary $\partial \mathbb{H} = \mathbb{R} \cup \{\infty\} \subset \widehat{\mathbb{C}}$ via Möbius transformations

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} . z = \frac{az+b}{cz+d}.$$

Note that $SL(2, \mathbb{R})$ acts transitively on $\partial \mathbb{H}$ and the stabilizer of ∞ is the subgroup of upper triangular matrices P. We may therefore identify $G/P \cong \mathbb{R} \cup \{\infty\}$.

Suppose there is a finite G-invariant measure m on $G/P \cong \mathbb{R} \cup \{\infty\}$. Consider the restriction $\mu = m|_{\mathbb{R}}$ of this measure to the real line. Observe that G acts on the real line via translations

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} . \xi = \xi + t, \qquad \xi, t \in \mathbb{R},$$

such that μ is in particular a translation invariant measure on \mathbb{R} , i.e. μ is a Haar measure on \mathbb{R} . By uniqueness of Haar measures μ must be a multiple of the Lebesgue measure on \mathbb{R} . Since m is finite μ is the zero measure. That means that mis a positive multiple of the dirac measure at ∞ , i.e. $m = \lambda \cdot \delta_{\infty}$ for some $\lambda > 0$. Now consider the rotation

$$i(z) = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} . z = -\frac{1}{z}$$

that sends ∞ to 0. By G-invariance we must have

$$\lambda \cdot \delta_{\infty} = i_*(\lambda \cdot \delta_{\infty}) = \lambda \cdot \delta_0$$

such that $\lambda = 0$; in contradiction to our assumption.