Solution 4

1. Let $T_{\ell}, \ell \geqslant 3$, be the ℓ-regular tree together with the combinatorial distance d. Show that $\operatorname{Iso}\left(T_{\ell}, d\right)$ is not a Lie group.
Hint: Try to show that the stabilizer of a vertex is a profinite group in an explicit way, and thus totally disconnected. Deduce that $\operatorname{Iso}\left(T_{\ell}, d\right)$ is not a manifold.
You could also show that every neighborhood of the identity in $\operatorname{Iso}\left(T_{\ell}, d\right)$ contains a non-trivial subgroup, which contradicts exercise 6 on exercise sheet 6 .
2. Let G be a Lie group, $H<G$ a subgroup that is also a regular submanifold.
(a) Show that H is a Lie group.
(b) Prove that H is a closed subgroup of G.

Solution:

(b) Let $x \in \bar{H}$. As G is clearly first countable, we find $\left(x_{n}\right)_{n \in \mathbb{N}} \in H^{\mathbb{N}}$ such that $x=\lim _{n \rightarrow \infty} x_{n}$. Let $V \subseteq W \subseteq \bar{W} \subseteq U$ open neighbourhoods of $1 \in G$ with compact closure and assume that $\psi: U \rightarrow(-1,1)^{\operatorname{dim} G}$ is a chart as in the definition of a regular submanifold. Assume furthermore that V is symmetric and $V V \subseteq W$. By assumption, there is $N \geqslant 1$ such that $x_{n} \in x V$ for all $n \geqslant N$, thus $x_{N}^{-1} x_{n} \in V^{-1} x^{-1} x V=V V \subseteq W$ for all $n \geqslant N$, and thus $x_{N}^{-1} x_{n} \in$ $H \cap V V \subseteq H \cap \bar{W}$. We note that $H \cap \bar{W}$ is compact by the choice of U. Indeed, $\psi(\bar{W}) \subseteq(-1,1)^{\operatorname{dim} G}$ is compact, and so is $\psi(\bar{W}) \cap\{0\}^{\operatorname{dim} G-\operatorname{dim} H} \times(-1,1)^{\operatorname{dim} H}$. But $x_{N}^{-1} x_{n}$ is convergent and has a limit y in $H \cap \bar{W}$; whence $x_{N} y=x \in H$.
3. We consider the determinant function det $: \operatorname{GL}(n, \mathbb{R}) \rightarrow \mathbb{R}^{*}$. Show that its differential at the identity matrix I is the trace function

$$
D_{I} \text { det }=\operatorname{tr} .
$$

Solution: Let $A \in \mathbb{R}^{n \times n} \cong T_{I} \mathrm{GL}(n, \mathbb{R})$. We compute

$$
\begin{aligned}
& D_{I} \operatorname{det}(A)=\left.\frac{d}{d t}\right|_{t=0}\left|\begin{array}{cccc}
1+t a_{1,1} & t a_{1,2} & \cdots & t a_{1, n} \\
t a_{2,1} & 1+t a_{2,2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & t a_{n-1, n} \\
t a_{n, 1} & \cdots & t a_{n, n-1} & 1+t a_{n, n}
\end{array}\right| \\
& \left.\stackrel{(*)}{=} \frac{d}{d t}\right|_{t=0}\left(\left(1+t a_{1,1}\right)\left|\begin{array}{cccc}
1+t a_{2,2} & t a_{2,3} & \cdots & t a_{2, n} \\
t a_{3,2} & 1+t a_{3,3} & \ddots & \vdots \\
\vdots & \ddots & \ddots & t a_{n-1, n} \\
t a_{n, 2} & \cdots & t a_{n, n-1} & 1+t a_{n, n}
\end{array}\right|\right) \\
& +\left.\sum_{j=2}^{n}(-1)^{j+1} \frac{d}{d t}\right|_{t=0}\left(t a_{2, j}\left|\begin{array}{ccc}
t a_{1,2} & \cdots & t a_{1, n} \\
& * &
\end{array}\right|\right) \\
& \stackrel{(* *)}{=}\left(a_{1,1}\left|\begin{array}{ccc}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right|+\left.\frac{d}{d t}\right|_{t=0}\left|\begin{array}{cccc}
1+t a_{2,2} & t a_{2,3} & \cdots & t a_{2, n} \\
t a_{3,2} & 1+t a_{3,3} & \ddots & \vdots \\
\vdots & \ddots & \ddots & t a_{n-1, n} \\
t a_{n, 2} & \cdots & t a_{n, n-1} & 1+t a_{n, n}
\end{array}\right|\right) \\
& +\sum_{j=2}^{n}(-1)^{j+1}\left(a_{2, j}\left|\begin{array}{ccc}
0 \cdot a_{1,2} & \cdots & 0 \cdot a_{1, n} \\
* &
\end{array}\right|+0 \cdot *\right) \\
& =a_{1,1}+\left.\frac{d}{d t}\right|_{t=0} \operatorname{det}\left(I_{2 \times n, 2 \times n}+t A_{2 \times n, 2 \times n}\right) \\
& =\cdots=a_{1,1}+\cdots+a_{n, n}=\operatorname{tr}(A),
\end{aligned}
$$

where we have developed the first column in $(*)$ and applied the product rule in (**).
4. Let M be a smooth n-dimensional manifold and $p \in M$. Show that if (U, φ) is any chart at p with $\varphi(p)=0$, then the map

$$
\mathbb{R}^{n} \rightarrow T_{p} M, \quad v \mapsto\left(f \mapsto D_{0}\left(f \circ \varphi^{-1}\right)(v)\right)
$$

is a vector space isomorphism.
5. Let M be a smooth manifold and $p \in M$. Show that for all open sets $U \subseteq M$ with $p \in U$ and every $g \in \mathcal{C}^{\infty}(U)$, there is $f \in \mathcal{C}^{\infty}(M)$ such that (U, g) and (M, f) define the same germ at p.
6. We have seen in class that if $\varphi: M \rightarrow M^{\prime}$ is a diffeomorphism, then $\operatorname{Vect}^{\infty}(M) \rightarrow$ Vect ${ }^{\infty}\left(M^{\prime}\right), X \mapsto \varphi_{*}(X)$ is a Lie algebra isomorphism. Give a formula for $\varphi_{*}(X)$ in terms of derivatives of φ.
Solution: See exercise class 2.

