Solution 5

1. Compute the Lie algebra of $O(p, q)$ and $\mathrm{SO}(p, q)$ for $n=p+q$.

Solution: Denote by $n:=p+q$. Recall that the definition of the group $O(p, q)$ is given by

$$
O(p, q)=\left\{\left.X \in G L(n, \mathbb{R})\right|^{t} X I_{p, q} X=I_{p, q}\right\}
$$

To compute the Lie algebra associated to $O(p, q)$ we are going to realize this group as a fiber of a suitable constant rank map. We define

$$
F: G L(n, \mathbb{R}) \rightarrow G L(n, \mathbb{R}), \quad F(X):={ }^{t} X I_{p, q} X
$$

Clearly F is smooth since it can be expressed as a polynomial functions of the coordinates of the matrix X. Additionally, by definition we have $F^{-1}\left(I_{p, q}\right)=O(p, q)$. We are going to prove that the map F has constant rank. Let X be any element in $G L(n, \mathbb{R})$ and let Y be any tangent vector at X (that means $Y \in M(n, \mathbb{R})$). Using the usual definition of the differential in terms of smooth curves we have

$$
\begin{aligned}
\left(D_{X} F\right)(Y) & =\left.\frac{d}{d s}\right|_{s=0} F(X+s Y)=\left.\frac{d}{d s}\right|_{s=0}\left({ }^{t}(X+s Y) I_{p, q}(X+s Y)\right)= \\
& =\left.\frac{d}{d s}\right|_{s=0}\left({ }^{t} X I_{p, q} X+s\left({ }^{t} X I_{p, q} Y+{ }^{t} Y I_{p, q} X\right)+s^{2}\left({ }^{t} Y I_{p, q} Y\right)\right)= \\
& =\left({ }^{t} X I_{p, q} Y+{ }^{t} Y I_{p, q} X\right)={ }^{t} X\left(I_{p, q} Y X^{-1}+{ }^{t}\left(X^{-1}\right)^{t} Y I_{p, q}\right) X= \\
& ={ }^{t} X D_{\mathrm{Id}}\left(Y X^{-1}\right) X .
\end{aligned}
$$

From the equation above we deduce that the rank of F is constant and the Lie algebra of $O(p, q)$ is given by

$$
\mathfrak{o}(p, q)=\operatorname{Lie}(O(p, q))=\operatorname{ker}\left(D_{\mathrm{Id}} F\right)=\left\{\left.X \in M(n, \mathbb{R})\right|^{t} X I_{p, q}+I_{p, q} X=0\right\}
$$

2. Realize $\operatorname{GL}(n, \mathbb{C}), \operatorname{SL}(n, \mathbb{C})$ and $U(n)$ as Lie groups, and compute their Lie algebras.

Solution: See exercise class 2.
3. Let G and H be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h}. Show that the Lie algebra of $G \times H$ can be identified with $\mathfrak{g} \times \mathfrak{h}$ with the bracket

$$
\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]=\left(\left[x_{1}, x_{2}\right]_{\mathfrak{g}},\left[y_{1}, y_{2}\right]_{\mathfrak{h}}\right) .
$$

Solution: We are going to denote by $X(M)=\operatorname{Vect}^{\infty}(M)$ the set of vector fields over a generic manifold M.

We are going to denote by

$$
i_{G}: G \rightarrow G \times H, \quad i_{G}(g):=(g, e)
$$

and similarly

$$
i_{H}: H \rightarrow G \times H, \quad i_{H}(h):=(e, h) .
$$

In the same way, the differential of both maps induces inclusions

$$
D_{e} i_{G}: T_{e} G \rightarrow T_{e} G \times T_{e} H, \quad D_{e} i_{G}(u):=(u, 0)
$$

and

$$
D_{e} i_{H}: T_{e} H \rightarrow T_{e} G \times T_{e} H, \quad D_{e} i_{G}(v):=(0, v) .
$$

Recall that $T_{e} G \times T_{e} H$ is canonically isomorphic to $T_{e} G \oplus T_{e} H$ as \mathbb{R}-vector spaces via the map which sends (u, v) to $u+v$, for every $u \in T_{e} G$ and every $v \in T_{e} H$. (In this way we get $D_{e} i_{G}$ is simply the inclusion of $T_{e} G$ into $T_{e} G \oplus T_{e} H$ and the same for $\left.D_{e} i_{H}\right)$. This means that every element w in $T_{(e, e)}(G \times H)$ can be written uniquely as $w=u+v$, where $u \in T_{e} G$ and $v \in T_{e} H$, or equivalently we can identify $T_{(e, e)}(G \times H)$ with $T_{e} G \oplus T_{e} H$.
From the lecture, we know that there is a bijection between left-invariant vector fields on G (resp. H) and vectors of the tangent space $T_{e} G$ (resp. $T_{e} H$) and the isomorphism is given by

$$
L_{G}: T_{e} G \rightarrow X(G)^{G}, \quad L_{G}(u):=u^{L}
$$

where the vector field u^{L} is defined at the point $g \in G$ as $u_{g}^{L}:=D_{e} L_{g}(u)$.
It should be clear that we have the following commutative diagram

The diagram above is telling us that every $(G \times H)$-left-invariant vector field $Z=w^{L}$, where $w \in T_{(e, e)}(G \times H)$, can be uniquely written as $Z=X+Y$, where $X=u^{L}$ (resp. $Y=v^{L}$) where $u \in T_{e} G$ (resp. $v \in T_{e} H$). Here the left-invariance property has to be understood in $G \times H$ (that means that both u^{L} and v^{L} are $G \times H$ left-invariant).
Take now $Z_{1}, Z_{2} \in X(G \times H)^{G \times H}$ of the form $Z_{i}=w_{i}^{L}$, where $w_{i} \in T_{(e, e)}(G \times H)$ for $i=1,2$. By what we have said so far there exist unique $u_{i} \in T_{e} G$ and $v_{i} \in T_{e} H$ such that $w_{i}^{L}=u_{i}^{L}+v_{i}^{L}$, for $i=1,2$. It holds

$$
\begin{aligned}
{\left[Z_{1}, Z_{2}\right] } & =\left[w_{1}^{L}, w_{2}^{L}\right]=\left[u_{1}^{L}+v_{1}^{L}, u_{2}^{L}+v_{2}^{L}\right]= \\
& =\left[u_{1}^{L}, u_{2}^{L}\right]+\left[u_{1}^{L}, v_{2}^{L}\right]+\left[v_{1}^{L}, u_{2}^{L}\right]+\left[v_{1}^{L}, v_{2}^{L}\right] .
\end{aligned}
$$

It is immediate to verify that for every $\left[u^{L}, v^{L}\right]=0$ for any $u \in T_{e} G$ and $v \in T_{e} H$, hence we get

$$
\left[w_{1}^{L}, w_{2}^{L}\right]=\left[u_{1}^{L}, u_{2}^{L}\right]+\left[v_{1}^{L}, v_{2}^{L}\right],
$$

which is exactly the Lie algebra structure given on the product, and we are done.
4. Show that the Lie algebra $\left(\mathbb{R}^{3}, \times\right)$, where \times denotes the cross product, is isomorphic to the Lie algebra of $O(3, \mathbb{R})$.
Solution: Check that the map

$$
\mathfrak{o}(3, \mathbb{R}) \rightarrow \mathbb{R}^{3}, \quad\left(\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right) \mapsto\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

is a Lie algebra isomorphism.
5. Read and understand the pages from Boothby's book (see website) that give a complete proof of Proposition 3.43 in the notes.

