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Solution 6

1. Use Proposition 3.38 (3) to show that expGL(n,R)(tA) = Exp(tA) for all t ∈ R and
A ∈ gl(n,R) = Matn,n(R), where Exp denotes the matrix exponential.

Solution: See proof of Corollary 3.8 in From topological groups to Lie groups.

2. Show that Exp: u(n) → U(n) is surjective.

Hint: Combine the fact that every A ∈ U(n) is diagonalizable with the formula gExp(X)g−1 =

Exp(gXg−1), which is valid for all X ∈ Matn,n(C) and g ∈ GL(n,C).

3. Show that Exp: gl(n,C) → GL(n,C) is surjective.
Hint: Use a similar argument as in Exercise 2 and the Jordan normal form.

4. Let V be a finite dimensional real vector space and Γ < V a discrete subgroup.
Show that there exist γ1, . . . , γr ∈ Γ, linearly independent in V such that Γ =
Zγ1 + . . .+ Zγr.
Solution: We will prove this by induction on the dimension n.

Let n = 1 and let D < R be a discrete subgroup. Without loss of generality
we may assume that D ̸= {0}. Since D is discrete there is x1 ∈ D ∖ {0} such
that |x1| = min{|x| : x ∈ D ∖ {0}}. We claim that D = Zx1. Suppose there is
y ∈ D ∖ Zx1. Then there is k ∈ Z such that

k · x1 < y < (k + 1) · x1.

It follows that y−k ·x1 ∈ D and |y−k ·x1| < |x1| which contradicts the minimality
of x1. This shows that D = Zx1 and finishes the proof of the base case n = 1.

Let n ∈ N and assume the statement holds for all discrete subgroups of Rn−1. Let
D < Rn be a discrete subgroup. Without loss of generality we may assume that
D ̸= {0}. There is x1 ∈ D ∖ {0} such that ∥x1∥ = min{∥x∥ : x ∈ D ∖ {0}}.
Consider the quotient Rn/Rx1

∼= Rn−1 and the projection

π : Rn −→ Rn/R · x1
∼= Rn−1

onto it.

We claim that D′ = π(D) < Rn−1 is a discrete subgroup. We will see this by
showing that V ′ := π(Br(0)) is an open neighborhood of 0 ∈ D′ such that V ′∩D′ =
{0} where r := inf{∥t · x1 − y∥ : t ∈ R, y ∈ D ∖ Zx1}.
First of all, we need to see that r is in fact positive. In order to prove this let us
verify that

r = inf{∥t·x1−y∥ : t ∈ R, y ∈ D∖Zx1} = inf{∥t·x1−y∥ : t ∈ [0, 1], y ∈ D∖Zx1}.
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Clearly, the left-hand-side is less than or equal to the right-hand-side. On the other
hand, if R ⩾ 0 such that there are t ∈ R and y ∈ D∖Zx1 satisfying R ⩾ ∥t·x1−y∥
then also

R ⩾ ∥t · x1 − y∥ = ∥(t− ⌊t⌋)x1 − (y − ⌊t⌋x1)∥;
whence there are s := t − ⌊t⌋ ∈ [0, 1] and w := (y − ⌊t⌋x1) ∈ D ∖ Zx1 such that
R ⩾ ∥s · x1 − w∥. Therefore, the right-hand-side is also less than or equal to the
left-hand-side such that they must be equal. Because {t · x1 : t ∈ [0, 1]} ⊂ Rn is
compact and D ∖ Zx1 is discrete the infimum on the right-hand-side is in fact a
minimum. It is attained at some t0 · x1 and y0 ∈ D∖Zx1. If r = ∥t0 · x1 − y0∥ = 0
then y0 = t0x1 and t0 ∈ (0, 1) because y0 /∈ Zx1. But then ∥y0∥ = t0∥x1∥ < ∥x1∥
which contradicts the minimality of ∥x1∥; whence r > 0.

Clearly, π : Rn → Rn−1 is an open map such that V ′ = π(Br(0)) is an open
neighborhood of 0 ∈ Rn−1. Now, let x′ ∈ D′ ∩ V ′, i.e. x′ = π(u) = π(y) for some
u ∈ Br(0), y ∈ D. Then y−u ∈ Rx1, i.e. y−u = t ·x1 for some t ∈ R. This implies
that

∥y − t · x1∥ = ∥u∥ < r = inf{∥y − t · x1∥ : t ∈ R, y ∈ D ∖ Zx1}.
We deduce that y ∈ Zx1 ⊂ Rx1; whence x′ = π(y) = 0 and V ′ ∩ D′ = {0}.
Therefore, 0 is an isolated point in D′ such that D′ is a discrete subgroup of Rn−1

as claimed.

By the induction hypothesis there are x′
2, . . . , x

′
k ∈ D′ < Rn−1 which are linearly

independent over R and generate D′ as a Z-submodule, i.e. D′ = Zx′
2 ⊕ · · · ⊕Zx′

k.
We choose for every x′

i a preimage xi ∈ π−1(x′
i) ∩ D. These x1, x2, . . . , xk ∈ D

are linearly independent over R and satisfy D = Zx1 ⊕ · · · ⊕ Zxk. Indeed, let
λ1, . . . , λk ∈ R such that

λ1x1 + λ2x2 + · · ·+ λkxk = 0. (1)

Then

0 = π(λ1x1 + λ2x2 + · · ·+ λkxk)

= λ1π(x1)︸ ︷︷ ︸
=0

+λ2π(x2) + · · ·+ λkπ(xk)

= λ2x
′
2 + · · ·+ λkx

′
k.

Because x′
2, . . . , x

′
k are linearly independent, λ′

2 = . . . = λ′
k = 0. By (1), λ1x1 = 0.

Finally, since x1 ̸= 0 also λ1 = 0.

In order to see that x1, . . . , xk generate D as a Z-module, let y ∈ D. Then

π(y) = a2x
′
2 + · · ·+ akx

′
k = a2π(x2) + · · ·+ akπ(xk)

for some a2, . . . , ak ∈ Z since x′
2, . . . , x

′
k generate D′ as a Z-module. Considering

y′ = a2x2 + · · ·+ akxk ∈ D we obtain

π(y′) = π(a2x2 + · · ·+ akxk) = a2π(x2) + · · ·+ akπ(xk) = π(y)
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by linearity such that y − y′ ∈ D ∩ kerπ = D ∩ Rx1.

We claim that D ∩ kerπ = Zx1. It is immediate that Zx1 ⊆ D ∩ kerπ. To see
the other inclusion suppose that there is t · x1 ∈ D for some t ∈ R ∖ Z. Then
w = (t− ⌊t⌋) · x1 ∈ D ∖ {0} and

∥w∥ = (t− ⌊t⌋) · ∥x1∥ < ∥x1∥

in contradiction to the minimality of x1.

Therefore, y − y′ ∈ Zx1 and there exists a1 ∈ Z such that

y = a1x1 + y′ = a1x1 + a2x2 + · · ·+ akxk.

Hence, D = Zx1 ⊕ · · · ⊕ Zxk.

5. Show that every connected abelian Lie group G is isomorphic as Lie groups to
Ta × Rn−a for some a ∈ {0, . . . , n}, where n = dimG and T ∼= R/Z.
Solution: See proof of Corollary 3.7 in From topological groups to Lie groups.

6. Let G be a Lie group. Show that there is an open neighborhood of e which does
not contain any non-trivial subgroup of G.

Solution: See proof of Theorem 3.12 in From topological groups to Lie groups.
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