Introduction to Lie groups

Solution 7

- 1. Review the proof of Cartan's Theorem.
- 2. Let H < G be a closed subgroup of a Lie group G with Lie algebra \mathfrak{g} . Show that

 $\operatorname{Lie}(H) = \{ X \in \mathfrak{g} \mid \exp_G(tX) \in H \,\forall t \in \mathbb{R} \}.$

Solution: In the proof of Cartan's theorem we have seen that

$$W := \{0\} \cup \{X \in \mathfrak{g} \setminus (0) : \exists (X_n) \in \mathfrak{g} \setminus (0) \text{ such that} \\ \exp_G(X_n) \in H \,\forall n \ge 1, \lim_{n \to \infty} X_n = 0, \lim_{n \to \infty} \frac{X_n}{\|X_n\|} = \frac{X}{\|X\|} \}$$

can be identified with the tangent space at e of H. Thus it suffices to show that $W = \{X \in \mathfrak{g} \mid \exp_G(tX) \in H \,\forall t \in \mathbb{R}\}.$

Let thus $X \in W$ and assume $X \neq 0$. By (1) in the proof of Cartan's theorem we have seen that $\exp_G(W) \subseteq H$. Since $tX \in W$ for all $t \in \mathbb{R}$, we have $\exp_G(tX) \in H$ for all $t \in \mathbb{R}$, which shows the first inclusion.

On the other hand let $X \in \mathfrak{g}$ such that $\exp_G(tX) \in H$ for all $t \in \mathbb{R}$. Assume $X \neq 0$, and set $X_n := \frac{1}{n}X$ for all $n \ge 1$. Then $X_n \in \mathfrak{g} \setminus (0)$, $\lim_{n \to \infty} X_n = \lim_{n \to \infty} \frac{1}{n}X = 0$ and

$$\lim_{n \to \infty} \frac{X_n}{\|X_n\|} = \lim_{n \to \infty} \frac{1/nX}{\|1/nX\|} = \frac{X}{\|X\|},$$

so $X \in W$.

3. Show that a continuous group homomorphism between two Lie groups is smooth.

Hint: Look at the graph of the map and apply Cartan's theorem.

Solution: Let $\varphi \colon G \to H$ be a continuous group homomorphism of Lie groups. Then $\operatorname{Graph}(\varphi) = \{(g, \varphi(g)) : g \in G\} \subseteq G \times H$ is a closed subgroup of a Lie group, hence by Cartan's theorem a Lie group. Consider now the map $\Gamma_{\varphi} \colon G \to \operatorname{Graph}(\varphi), g \mapsto (g, \varphi(g))$, which is a homeomorphism of groups and whose inverse is the restriction of the projection $G \times H \to G$ to $\operatorname{Graph}(\varphi)$. The inverse of Γ_{φ} is smooth with constant rank, and hence Γ_{φ} is a diffeomorphism. If now q denotes the projection $G \times H \to H$ on the second factor, then $\varphi = q \circ \Gamma_{\varphi}$. Since both q and Γ_{φ} are smooth, so is φ .

4. Read the pages 32-34 in *Representations of Compact Lie Groups* by Bröcker-Dieck.

HS22

5. Let G be a Lie group with Lie algebra \mathfrak{g} . Show that Ad: $G \to \operatorname{GL}(\mathfrak{g}), g \mapsto \operatorname{Ad}(g)$ is smooth, where $\operatorname{Ad}(g) := D_e(\operatorname{int}(g))$.

Hint: Apply Proposition 3.50 to the map $int(g): G \to G, x \mapsto gxg^{-1}$. Use that exp_G is a local diffeomorphism to conclude that Ad is smooth near e. Then use left translation to show that Ad is smooth everywhere.

Solution: Consider the map $F: G \times G \to G$ defined by $F(g, h) := ghg^{-1}$. This is smooth, so its differential $DF: TG \times TG \to TG$ is smooth. Restrict in the second component to the submanifold $T_eG = \mathfrak{g}$. The zero vector field $0: G \to TG$ is a smooth map, thus the map

$$G \times \mathfrak{g} \to TG, \, (g, X) \mapsto DF(0(g), X)$$

is smooth as well. From the construction, we have

$$D_{(g,e)}F(0(g),X) = \frac{d}{dt}_{|t=0}F(g,\exp(tX)) = \frac{d}{dt}_{|t=0}g\exp(tX)g^{-1} = \operatorname{Ad}(g)(X) \in T_eG.$$

Thus the map $G \times \mathfrak{g} \to \mathfrak{g}$, $(g, X) \mapsto \operatorname{Ad}(g)(X)$ is smooth. If you choose a basis for \mathfrak{g} , say $\{X_i\}$ with dual basis $\{X_i^*\}$, then the entries of the matrix representing $\operatorname{Ad}(g)$ with respect to the basis $\{X_i\}$ is $X_i^*(\operatorname{Ad}(g)(X_j))$, so they depend smoothly on g, thus $\operatorname{Ad}: G \to \operatorname{GL}(\mathfrak{g})$ is smooth.

6. Let G be a connected Lie group with Lie algebra \mathfrak{g} and $\mathfrak{a} \triangleleft \mathfrak{g}$ an abelian ideal in \mathfrak{g} . Show that $\exp_G(\mathfrak{a})$ is a normal subgroup of G.

Solution: Since \mathfrak{a} is abelian $\exp_{G|\mathfrak{a}}$ is a homomorphism, and $A := \exp_G(\mathfrak{a})$ is a subgroup of G. Since G is connected it suffices to prove the claim for elements in a neighborhood U of e. We can take this neighborhood such $\exp_G: \mathfrak{g} \to G$ is a local diffeomorphism from a neighborhood of $0 \in \mathfrak{g}$ onto it. Thus for all $g \in U$ there exists $Y \in \mathfrak{g}$ such that $g = \exp_G(Y)$. We thus have using the naturality of \exp_G for all $X \in \mathfrak{a}$

$$\exp_{G}(Y) \exp_{G}(X) \exp_{G}(Y)^{-1} = \operatorname{int}(\exp_{G}(Y)) \circ \exp_{G}(X)$$
$$= \exp_{G}(\operatorname{Ad}(\exp_{G}(Y))X)$$
$$= \exp_{G}(\operatorname{Exp}(\operatorname{ad}(Y))X)$$
$$= \exp_{G}\left(\sum_{k=0}^{\infty} \frac{1}{k!} \operatorname{ad}(Y)^{k}X\right)$$
$$\in \exp_{G}(\mathfrak{a}),$$

since \mathfrak{a} is an ideal in \mathfrak{g} . Thus $\exp_G(\mathfrak{a})$ is normal in G.

7. Let G be a topological group and H < G a closed subgroup. Show that if H and G/H are connected, then so is G.

Solution: We suppose that H and G/H are connected and that $G = A \cup B$ for disjoint, non-empty open sets A and B in G. Assume without loss of generality

that $e \in A$. Since H is connected, all of its left cosets $gH = L_g(H)$ are. Thus since each coset meets either A or B it must be contained entirely in one of the two. Consequently, A and B are union of left cosets of H. If now $p: G \to G/H$ denotes the projection map on left cosets, it follows that both p(A) and p(B) are non-empty disjoint. Since p is open, p(A) and p(B) are open non-empty disjoint whose union is G/H, which contradicts the connectedness of G/H.