
D-MATH Introduction to Lie groups HS22
Prof. Marc Burger

Solution 9

1. Read pages 4-37 to 4-39 and verify that everything works as stated.

2. Let G be a connected Lie group with Lie algebra g and Killing form Kg. Show
that for all X, Y ∈ g and g ∈ G

Kg(Ad(g)X,Ad(g)Y ) = Kg(X, Y ),

where Ad: G → GL(g) is the adjoint representation of G.

Hint: Compute the derivative of Φ(t) := Kg(Ad(exp tZ)X,Ad(exp tZ)Y ) and use Proposition

4.46.

Solution: Show that in a neighborhood U of e in G, the derivative is constant
equal to 0. For this use that if B is a bilinear form on a vector space then
D(x,y)B(v, w) = B(x,w)+B(v, y). Furthermore, remark that Ad◦ exp = Exp◦ad,
and we understand how to differentiate Exp. SinceKg(Ad(g) ·,Ad(g) ·) andKg(·, ·)
agree at g = e ∈ U , they agree on all of U . Now G connected implies the claim
since U generates G.

3. Let g be a real Lie algebra.

(a) Show that under the inclusion g ↪→ gC = g+ ig we have that

Kg = KgC|g×g .

(b) Show that KgC|
g
(1)
C ×g

(1)
C

= 0 if and only if Kg|
g(1)×g(1)

= 0.

Hint: Use that g
(1)
C = g(1) + ig(1).

Hint :

(a) Use the same decomposition as in class.

(b) Another hint would be to use Cartan’s solvability criterion and Exercise 3
(a) on Exercise Sheet 8.

4. Compute the Killing form of the Lie algebra sl(2,R). Solution: See exercise class.

5. Consider the three-dimensional Heisenberg group

H =


1 x z
0 1 y
0 0 1

 : x, y, z ∈ R

 .
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Note that the center of H is

Z(H) =


1 0 z
0 1 0
0 0 1

 : z ∈ R

 .

Let D < Z(H) be the following discrete subgroup

D := SL3(Z) ∩ Z(H) =


1 0 n
0 1 0
0 0 1

 : n ∈ Z

 .

Check that G := H/D is a connected, solvable Lie group and show that G does not
admit a smooth, injective homomorphism into GL(V ) for any finite-dimensional
C-vector space V .

Solution: Since H is connected, so is G, and since both H and D are solvable, so
is G. Assume π : G → GL(V ) is a smooth homomorphism for a finite-dimensional
C-vector space V . We will show that π(Z(H)/D) = id, that is Z(H)/D < ker π,
so that π cannot be injective.

Let us observe first of all that, since D is discrete, then

Lie(H/D) = Lie(H) = h =


0 x z
0 0 y
0 0 0

 : x, y, z ∈ R

 ⊂ gl(3,R)

and it is moreover solvable. Furthermore

Lie(Z(H)/D) = Lie(Z(H)) =


0 0 z
0 0 0
0 0 0

 = [h, h] .

By Lie’s theorem, if ρ := deπ, the image ρ(h) is upper triangular, so that [ρ(h), ρ(h)]
is strictly upper triangular. Thus

ρ(Lie(Z(H)/D)) = ρ([h, h]) = [ρ(h), ρ(h)] ⊂



0 ∗ . . . ∗
0

. . . . . .
...

...
. . . . . . ∗

0 . . . 0 0


 ,

from which it follows that

π(Z(H)/D) <



1 ∗ . . . ∗
0

. . . . . .
...

...
. . . . . . ∗

0 . . . 0 1


 =: L .
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Observe that since Z(H)/D ≃ S1, then π(Z(H)/D) =: K is a compact subgroup
of L. We will show now that L cannot have non-trivial compact subgroups, which
forces K = id. In order to show this, we will show that any compact subgroup can
be conjugated into any small neighborhood of id ∈ GL(n,C), thus contradicting
that L is a Lie group.

To this purpose, let g = diag(λ1, . . . , λn) ∈ GL(n,C) a diagonal matrix with entries
0 < λ1 < λ2 < · · · < λn. Then, if i < j,cg


1 ∗ . . . ∗
0

. . . . . .
...

...
. . . . . . ∗

0 . . . 0 1




ij

=


λ1

. . .

λn



1 ∗ . . . ∗
0

. . . . . .
...

...
. . . . . . ∗

0 . . . 0 1


λ−1

1
. . .

λ−1
n




=
λi

λj


1 ∗ . . . ∗
0

. . . . . .
...

...
. . . . . . ∗

0 . . . 0 1


ij

,

so that cng


1 ∗ . . . ∗
0

. . . . . .
...

...
. . . . . . ∗

0 . . . 0 1




ij

=

(
λi

λj

)n


1 ∗ . . . ∗
0

. . . . . .
...

...
. . . . . . ∗

0 . . . 0 1


ij

(1)

If


1 ∗ . . . ∗
0

. . . . . .
...

...
. . . . . . ∗

0 . . . 0 1

 ∈ K its entries are bounded and, since λi/λj < 1, the right

hand side of (1) converges to id and is hence eventually contained in any neigh-
borhood of id, no matter how small.

6. Show the following exceptional isomorphisms of Lie algebras.

(a) Show that so(6,C) ∼= sl(4,C). Hint: If dimV = 4 then dimΛ2V = 6.

(b) Show that so(4,C) ∼= sl(2,C)⊕ sl(2,C).
(c) Show that so(3,C) ∼= sl(2,C).
(d) Show that sp(2,C) ∼= sl(2,C) and sp(4,C) ∼= so(5,C).

Solution:
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(a) Consider the standard action of an element g ∈ SL(4,C) on the vector space
C4, that means

g.v := gv, v ∈ C4,

where gv is the standard multiplication rows-by-columns. This action deter-
mines an action on the space C4 ⊗ C4 and hence on the space Λ2C4 given
by

g.(u ∧ v) := gu ∧ gv, u, v ∈ C4.

In this way we obtain a morphism SL(4,C) → SL(6,C). We need to show
that its image actually is contained in SO(6,C).
The key point now is that Λ4C4 ∼= C and if we fix the canonical basis E =
{e1, e2, e3, e4} a generator is given by e1∧ e2∧ e3∧ e4. This allows us to define
a symmetric bilinear form B : Λ2C4 × Λ2C4 → C as it follows. Consider
u1 ∧ v1, u2 ∧ v2 ∈ Λ2C4. Since Λ4C4 is generated by e1 ∧ e2 ∧ e3 ∧ e4, we can
define B(u1 ∧ v1, u2 ∧ v2) to be the unique scalar for which it holds

u1 ∧ v1 ∧ u2 ∧ v2 = B(u1 ∧ v1, u2 ∧ v2)e1 ∧ e2 ∧ e3 ∧ e4.

The function B defined above is a symmetric bilinear form which is non-
degenerate (you can express the associated matrix in the basis Λ2E = {ei ∧
ej}i<j and check that the determinant is different from zero). In addition the
SL(4,C)-action on Λ2C4 preserves B (you can check it on the elements on
the basis since B is bilinear). Thus the representation SL(4,C) → SL(6,C)
has image contained in SO(6,C), as desired. This is a smooth homomorphism
whose kernel is equal to {Id,−Id}, hence it induces an isomorphism between
the associated Lie algebras, as desired.

(b) Using the definition it is easy to verify that SL(2,C) = Sp(2,C) (see (d)
below). This means that any g ∈ SL(2,C) preserves the standard symplectic
form given by

ω(u, v) := tuJ2v, J2 =

(
0 −1
1 0

)
,

for every u, v ∈ C2.

By using the symplectic form ω we can define the following function

B : C2 ⊗ C2 → C, B(u1 ⊗ v1, u2 ⊗ v2) = ω(u1, u2)ω(v1, v2).

The function B is a symmetric bilinear form which is non-degenerate. If we
now consider the action of SL(2,C)×SL(2,C) on C2⊗C2 given by (g, h)(u⊗
v) := (gu ⊗ hv) for every g, h ∈ SL(2,C), u, v ∈ C2, we get that this action
preserves B. Hence we get a smooth homomorphism SL(2,C) × SL(2,C) →
SO(4,C) whose kernel is {(Id, Id), (−Id,−Id)}. The induced homorphism on
the associated Lie algebras is the desired isomorphism.
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(c) Recall that the Lie algebra

sl(2,C) = {X ∈ M(2,C)|tr(X) = 0}

admits the following natural basis

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

In the same way the Lie algebra

so(3,C) = {X ∈ M(3,C)|tX +X = 0}

has a natural basis given by hij = Eij − Eji for i, j = 1, 2, 3 and i < j. Here
Eij denotes the matrix with 1 in the only entry of indices (i, j) and equal to
zero elsewhere.

Define a map φ : sl(2,C) → so(3,C) in the following way

φ(H) = −2ih13, φ(E) = ih12 + h23, φ(F ) = −ih12 + h23. (2)

It easy to verify that the map φ gives us the desired isomomorphism.

(d) It follows immediately by the definition that Sp(2,C) = SL(2,C) and from
this it follows the isomorphism between the associated Lie algebras (they are
the same).

We move now to Sp(4,C). Consider the standard action of Sp(4,C) on Λ2C4

(the same defined in Exercise 1) and the same bilinear formB. Since Sp(4,C) <
SL(4,C) we get that any g ∈ Sp(4,C) preserves B. If E denotes the canonical
basis of C4, since g preserves the standard symplectic form on C4, it must
fixes the element

σ := e1 ∧ e3 + e2 ∧ e4 ∈ Λ2C4.

It easy to see that B(σ, σ) ̸= 0. This means that the Sp(4,C)-action preserves
the decomposition

Λ2C4 = ⟨σ⟩ ⊕ ⟨σ⟩⊥

and also the restriction of B to ⟨σ⟩⊥. This implies that we get a smooth
homomorphism Sp(4,C) → SO(5,C) which induces the desired isomorphism
between the associated Lie algebras.

7. The goal of this exercise is to show that the spin group SU(2,C) is the universal
covering group of the rotation group SO(3,R). Consider

SU(2,C) := {g ∈ SL(2,C) : g∗g = I} =

{(
a b
−b̄ ā

)
∈ SL(2,C)

}
and its Lie algebra

su(2,C) = {X ∈ sl(2,C) : X∗ +X = 0} =

{(
ia −z̄
z −ia

)
: a ∈ R, z ∈ C

}
.
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(a) Construct a Lie group homomorphism φ : SU(2,C) → SO(3,R) whose kernel
is {±I}.
Hint: Use the adjoint representation of SU(2,C) on su(2,C) and show that

b(X,Y ) := −1

2
tr(XY )

defines a positive definite symmetric bilinear form on su(2,C) considered as a real vector

space.

(b) Show that dIφ : su(2,C) → so(3,R) is a Lie algebra isomorphism and deduce
that φ is a covering map.

(c) Show that SU(2,C) is homeomorphic to the 3-sphere S3 and deduce that
SU(2,C) is simply connected. Show that SO(3,R) is homeomorphic to the
three-dimensional real projective space RP3. What is the fundamental group
of SO(3,R)?

(d) Are there any other Lie groups whose Lie algebra is isomorphic to su(2,C)?
Hint: Analyze the discrete normal subgroups of SU(2,C).

Solution:

(a) Observe that a R-basis for su(2,C) is given by the matrices

U1 =

(
0 i
i 0

)
, U2 =

(
0 −1
1 0

)
, U3 =

(
i 0
0 −i

)
;

in particular dimR su(2,C) = 3 and su(2,C) ∼= R3 as vector spaces over R. It
is immediate that b(·, ·) as defined above is bilinear. Further, it is symmetric
due to the fact that

tr(XY ) = tr(Y X) (3)

for all X, Y ∈ Rn×n. One computes directly that

b(Ui, Uj) = δij

for every i, j = 1, 2, 3 whence b(·, ·) corresponds to the standard Euclidean
product under the vector space isomorphism su(2,C) ∼= R3.

As we have discussed in the lecture the adjoint representation Ad: SU(2,C) →
GL(su(2,C)) is given by matrix conjugation

Ad(g)(X) = gXg−1

for all g ∈ SU(2,C), X ∈ su(2,C). We use this fact in order to see that b is
in fact Ad-invariant:

b(Ad(g)X,Ad(g)Y ) = −1

2
tr(gXg−1gY g−1) = −1

2
tr(gXY g−1)

(3)
= −1

2
tr(g−1gXY ) = −1

2
tr(XY )

= b(X, Y )
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for all X, Y ∈ su(2,C) and every g ∈ SU(2,C). In other words the adjoint
action of SU(2,C) on the inner product space (su(2,C), b) is isometric and
hence takes values in O(su(2,C), b) ∼= O(3,R). By the first part of c) SU(2,C)
is homeomorphic to the 3-sphere S3 and hence connected (there will be no
cyclic reasoning!). Being a smooth homomorphism from SU(2,C) to O(3,R)
the adjoint representation sends SU(2,C) in the connected component of
the identity of O(3,R) which is SO(3,R) = O(3,R)◦. Therefore, the adjoint
representation gives rise to a Lie group homomorphism

Ad : SU(2,C) −→ O(su(2,C), b)◦ ∼= SO(3,R).

Let us now prove that kerAd = {±I}. Since ±I ∈ SU(2,C) commutes with
every matrix in GL(2,C) it is immediate that {±I} ⊆ kerAd. In view of the
other inclusion observe that

g ∈ kerAd ⇐⇒ Ad(g)(X) = X ∀X ∈ su(2,C)
⇐⇒ gUig

∗ = Ui ∀i = 1, 2, 3.

Writing

g =

(
a b
−b̄ ā

)
we obtain

gU1g
∗ =

(
biā+ aib̄ ia2 − ib2

i (ā)2 − i
(
b̄
)2

b(−i)ā− iab̄

)
!
=

(
0 i
i 0

)
,

gU2g
∗ =

(
bā− ab̄ −a2 − b2

(ā)2 +
(
b̄
)2

ab̄− bā

)
!
=

(
0 −1
1 0

)
,

gU3g
∗ =

(
iaā− ibb̄ −2iab
−2iāb̄ ibb̄− iaā

)
!
=

(
i 0
0 −i

)
.

These equations then easily imply a = ±1, b = 0, i.e. kerAd ⊆ {±I}.
(b) As discussed in the lecture we have the following commutative diagram:

su(2,C) so(3,R)

SU(2,C) SO(3,R)

deAd=ad

Exp Exp

Ad

Further,
so(3,R) = {X ∈ sl(2,R) : XT = −X}

and dimR so(3,R) = 3 = dimR su(2,C). Hence it suffices to show that Ad is
injective in order to see that deAd is a Lie algebra isomorphism.
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Let X ∈ ker ad. Then

0 = ad(X)(Y ) = [X, Y ] = XY − Y X

for all Y ∈ su(2,C); or equivalently

XU1 − U1X = 0, XU2 − U2X = 0, XU3 − U3X = 0.

A direct computation yields

XU1 − U1X =

(
−i (z + z∗) −2a

2a i (z + z∗)

)
,

XU2 − U2X =

(
z − z∗ −2ia
−2ia z∗ − z

)
,

XU3 − U3X =

(
0 2iz∗

2iz 0

)
,

which easily implies a = z = 0 whence ker ad = {0}. Therefore, ad is
injective and a Lie algebra isomorphism. We claim that this implies that
Ad : SU(2,C) → SO(3,R) is a covering map. Let us for this recall a more
general statement, which immediately implies the above.

Claim: Let H, G be arbitrary Lie groups and let G be connected. Further,
let φ : H → G be a Lie group homomorphism. Show that φ is a covering map
if and only if Deφ : h → g is an isomorphism.

Proof of claim: First suppose that φ is a covering map. Note that Dẽφ is a
Lie algebra homomorphism since φ is a smooth homomorphism. Because φ is
additionally a smooth covering map there are open neighborhoods U ⊆ G of
e and V ⊆ H of ẽ such that φ|V : V → U is a diffeomorphism. In particular,
Deφ : TẽH ∼= h → TeG ∼= g is bijective such that Dẽφ is a Lie algebra
isomorphism. By a lemma from the lecture every local homomorphism with
bijective Dẽφ : h → g is a local isomorphism.

Now, assume that φ : H → G is a smooth homomorphism such thatDeφ : h →
g is an isomorphism. This means that Dẽφ : TẽH → TeG is invertible such
that by the inverse function theorem there are open neighborhoodes U ⊆ G
about e ∈ G and V ⊆ H about ẽ ∈ H such that φ|V : V → U is a diffeo-
morphism. Because G is connected the open neighborhood U about e ∈ G
generates G and it follows easily that φ : H → G is surjective.

Now, choose a symmetric open neighborhood W ⊆ V about ẽ ∈ H such
that W 2 ⊆ V . Consider the open subset U ′ := φ(W ) ⊆ U . We claim that
φ−1(U ′) =

⊔
h∈kerφWh and φ|Wh : Wh → U ′ is a diffeomorphism for all

h ∈ kerφ. Because h ∈ kerφ we have that φ ◦ Rh = φ. Further φ : W → U ′

is a diffeomorphism such that also φ : Wh → U ′ is a diffeomorphism. Also,
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x ∈ φ−1(U ′) = φ−1(φ(W )) ⇐⇒ φ(x) ∈ φ(W )

⇐⇒ ∃w ∈ W : φ(x) = φ(w) ⇐⇒ ∃w ∈ W : φ(w−1x) = e

⇐⇒ ∃w ∈ W : w−1x ∈ kerφ ⇐⇒ x ∈
⋃

h∈kerφ

Wh,

such that φ−1(U ′) =
⋃

h∈kerφWh. Finally, if Wh∩Wh′ ̸= ∅ for some h, h′ ∈
kerφ then there are w,w′ ∈ W such that wh = w′h′, i.e. h−1h′ ∈ W 2 ⊆ V .
Because φ|V : V → U is injective and also φ(h−1h′) = φ(h−1)φ(h′) = e it
follows that h−1h′ = ẽ, or equivalently h = h′. Thus,

⋃
h∈kerφWh is a disjoint

union as claimed.

Using this together with the fact that φ is a homomorphism proves that φ is
a covering map.

(c) In order to show that SU(2,C) is homeomorphic to S3 we consider its natural
action on C2. Let us equip C2 with the standard hermitian inner product

(z1, w1) · (z2, w2) := z1z̄2 + w1w̄2.

Identifying C2 ∼= R4 it is easy to see that S3 ⊆ R4 corresponds to the unit
sphere S1(0) of all (z, w) ∈ C2 at distance 1 to 0 ∈ C2. Further, SU(2,C) acts
on C2 isometrically by definition whence it also acts on S1(0). We claim that
this action is free, transitive and smooth.

Smoothness is immediate. Note that every vector v ∈ S1(0) can be completed
to a (positively oriented) orthonormal basis {v, w} of C2. Then the matrix
g with column vectors v and w is in SU(2,C) and g.(1, 0) = v. Therefore
the action is transitive. Finally, we will see that the action is free, i.e. it has
trivial stabilizers. We will compute StabSU(2,C)((1, 0)). Let

g =

(
a b
−b̄ ā

)
∈ Stab((1, 0)),

i.e. (
1
0

)
=

(
a b
−b̄ ā

)(
1
0

)
=

(
a
−b̄

)
whence a = 1, b = 0 and g = I. Therefore Stab((1, 0)) = {I} and the action
is free.

By exercise 3.1c) we get

SU(2,C) ∼= SU(2,C)/Stab((1, 0)) ∼= S1(0) ∼= S3.

Because S3 is simply connected so is SU(2,C). In particular, Ad : SU(2,C) →
SO(3,R) is the universal covering.
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In order to see that SO(3,R) ∼= RP 3 recall that RP 3 ∼= S3/(x ∼ −x). The
action of SU(2,C) on S1(0) ∼= S3 descends to a smooth action of SU(2,C)
on RP 3 ∼= S1(0)/((z, w) ∼ (−z,−w)) by linearity. However, this action is no
longer free. Indeed, the point stabilizer of [1 : 0] ∈ S1(0)/((z, w) ∼ (−z,−w))
is {±I} and

RP 3 ∼= S1(0)/((z, w) ∼ (−z,−w)) ∼= SU(2,C)/{±I} ∼= SO(3,R).

It is well known from topology that π1(RP 3) ∼= Z/2Z whence the fundamental
group of SO(3,R) is also isomorphic to Z/2Z.

(d) Any Lie group G admits a simply connected Lie group G̃ covering it via some
smooth covering homomorphism π : G̃ → G as we have seen in Exercise 2 of
Exercise sheet 2. This is the unique universal covering group of G with Lie
algebra g whence if g ∼= su(2,C) its universal covering group G̃ is isomorphic
to SU(2,C). Therefore, G is isomorphic to SU(2,C)/ kerπ. We have seen
in class that N := ker π is a discrete (normal) subgroup of SU(2,C). Since
SU(2,C) is connected N has to be central. Hence, in order to see which Lie
groups G = SU(2,C)/N have Lie algebra su(2,C) it is enough to analyze the
central discrete subgroups of SU(2,C).
To this end we analyze the centre

Z(G) = {h ∈ G : hgh−1 = g ∀g ∈ G}

of G = SU(2,C). It is easy to see that Z(G) = kerAd. As we have computed
before kerAd = {±I}. And its only subgroups are {I} and {±I}. Therefore
SO(3,R) ∼= SU(2,C)/{±I} and SU(2,C) are the only Lie groups with Lie
algebra isomorphic to su(2,C).
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