Exercise 1.1 Let X be a vector space over a field $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Prove the following statements.

- (a) Every norm $\|\cdot\|: X \to [0, +\infty)$ on X induces a metric d on X by $d(x, y) := \|x y\|$, for every $x, y \in X$.
- (b) A metric $d: X \times X \to [0, +\infty)$ on X is induced by a norm (in the sense that there exists a norm $\|\cdot\|$ on X such that $d(x, y) = \|x y\|$, for every $x, y \in X$) if and only if d is homogeneous and translation invariant, i.e.

$$d(x + v, y + v) = d(x, y) \qquad \forall x, y, v \in X, d(\lambda x, \lambda y) = |\lambda| d(x, y) \qquad \forall x, y \in X, \forall \lambda \in \mathbb{K}.$$

- (c) The operations of scalar multiplication $\cdot : \mathbb{K} \times X \to X$ and addition $+ : X \times X \to X$ are continuous with respect to the topology on X induced by any norm.
- (d) The topologies on X induced by two equivalent norms coincide.

Exercise 1.2 Let $C^0([0,1])$ be the set of the \mathbb{R} -valued continuous functions on [0,1]. Prove the following statements.

(a) $(C^0([0,1]), \|\cdot\|_{\infty})$ is complete as a normed vector space over \mathbb{R} , where

$$||f||_{\infty} := \sup_{x \in [0,1]} |f(x)|, \quad \forall f \in C^{0}([0,1]).$$

(b) For every $p \in [1, +\infty)$, $(C^0([0, 1]), \|\cdot\|_p)$ is **not** complete as a normed vector space over \mathbb{R} , where

$$||f||_p := \left(\int_0^1 |f(x)|^p \, dx\right)^{\frac{1}{p}}, \qquad \forall f \in C^0([0,1]).$$

(c) Let $(a_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ be a sequence. Given any $p \in [1, +\infty]$, let

$$\|(a_n)_{n\in\mathbb{N}}\|_{\ell^p} := \begin{cases} \left(\sum_{n=0}^{+\infty} |a_n|^p\right)^{\frac{1}{p}} & \text{if } p < +\infty\\ \sup_{n\in\mathbb{N}} |a_n| & \text{if } p = +\infty. \end{cases}$$

and define

$$\ell^p := \{ (a_n)_{n \in \mathbb{N}} \text{ s.t. } \| (a_n)_{n \in \mathbb{N}} \|_{\ell^p} < +\infty \}.$$

Prove that $(\ell^p, \|\cdot\|_q)$ is a complete vector space over \mathbb{R} if and only if $1 \le q \le p \le +\infty$. Last modified: 24 September 2022

1/2

Exercise 1.3 Let $(X, \|\cdot\|)$ be a normed vector space. Prove that the following are equivalent.

- (a) $(X, \|\cdot\|)$ is a Banach space.
- (b) For every sequence $(x_n)_{n \in \mathbb{N}} \subset X$ with $\sum_{n=0}^{+\infty} ||x_n|| < +\infty$ the limit $\lim_{N \to +\infty} \sum_{n=0}^{N} x_n$ exists.

Exercise 1.4 Let $(X, \|\cdot\|)$ be an infinite dimensional normed vector space over a field $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Prove that there exists a non-continuous linear map $\ell : X \to \mathbb{K}$.