Exercise 1.1 Let X be a vector space over a field $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. Prove the following statements.
(a) Every norm $\|\cdot\|: X \rightarrow[0,+\infty)$ on X induces a metric d on X by $d(x, y):=\|x-y\|$, for every $x, y \in X$.
(b) A metric $d: X \times X \rightarrow[0,+\infty)$ on X is induced by a norm (in the sense that there exists a norm $\|\cdot\|$ on X such that $d(x, y)=\|x-y\|$, for every $x, y \in X)$ if and only if d is homogeneous and translation invariant, i.e.

$$
\begin{aligned}
d(x+v, y+v) & =d(x, y) \quad \forall x, y, v \in X \\
d(\lambda x, \lambda y) & =|\lambda| d(x, y) \quad \forall x, y \in X, \forall \lambda \in \mathbb{K} .
\end{aligned}
$$

(c) The operations of scalar multiplication $\cdot: \mathbb{K} \times X \rightarrow X$ and addition $+: X \times X \rightarrow X$ are continuous with respect to the topology on X induced by any norm.
(d) The topologies on X induced by two equivalent norms coincide.

Exercise 1.2 Let $C^{0}([0,1])$ be the set of the \mathbb{R}-valued continuous functions on $[0,1]$. Prove the following statements.
(a) $\left(C^{0}([0,1]),\|\cdot\|_{\infty}\right)$ is complete as a normed vector space over \mathbb{R}, where

$$
\|f\|_{\infty}:=\sup _{x \in[0,1]}|f(x)|, \quad \forall f \in C^{0}([0,1]) .
$$

(b) For every $p \in[1,+\infty),\left(C^{0}([0,1]),\|\cdot\|_{p}\right)$ is not complete as a normed vector space over \mathbb{R}, where

$$
\|f\|_{p}:=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{\frac{1}{p}}, \quad \forall f \in C^{0}([0,1])
$$

(c) Let $\left(a_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}$ be a sequence. Given any $p \in[1,+\infty]$, let

$$
\left\|\left(a_{n}\right)_{n \in \mathbb{N}}\right\|_{\ell^{p}}:= \begin{cases}\left(\sum_{n=0}^{+\infty}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}} & \text { if } p<+\infty \\ \sup _{n \in \mathbb{N}}\left|a_{n}\right| & \text { if } p=+\infty\end{cases}
$$

and define

$$
\ell^{p}:=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \text { s.t. }\left\|\left(a_{n}\right)_{n \in \mathbb{N}}\right\|_{\ell^{p}}<+\infty\right\} .
$$

Prove that $\left(\ell^{p},\|\cdot\|_{q}\right)$ is a complete vector space over \mathbb{R} if and only if $1 \leq q \leq p \leq+\infty$.

Functional Analysis I
 Exercise Sheet 1

ETH Zürich
Assistant: R. Caniato

Exercise 1.3 Let $(X,\|\cdot\|)$ be a normed vector space. Prove that the following are equivalent.
(a) $(X,\|\cdot\|)$ is a Banach space.
(b) For every sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ with $\sum_{n=0}^{+\infty}\left\|x_{n}\right\|<+\infty$ the limit $\lim _{N \rightarrow+\infty} \sum_{n=0}^{N} x_{n}$ exists.

Exercise 1.4 Let $(X,\|\cdot\|)$ be an infinite dimensional normed vector space over a field $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. Prove that there exists a non-continuous linear map $\ell: X \rightarrow \mathbb{K}$.

