Exercise 1.1 Let X be a vector space over a field $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. Prove the following statements.
(a) Every norm $\|\cdot\|: X \rightarrow[0,+\infty)$ on X induces a metric d on X by $d(x, y):=\|x-y\|$, for every $x, y \in X$.
(b) A metric $d: X \times X \rightarrow[0,+\infty)$ on X is induced by a norm (in the sense that there exists a norm $\|\cdot\|$ on X such that $d(x, y)=\|x-y\|$, for every $x, y \in X)$ if and only if d is homogeneous and translation invariant, i.e.

$$
\begin{aligned}
d(x+v, y+v) & =d(x, y) \quad \forall x, y, v \in X \\
d(\lambda x, \lambda y) & =|\lambda| d(x, y) \quad \forall x, y \in X, \forall \lambda \in \mathbb{K} .
\end{aligned}
$$

(c) The operations of scalar multiplication $\cdot: \mathbb{K} \times X \rightarrow X$ and addition $+: X \times X \rightarrow X$ are continuous with respect to the topology on X induced by any norm.
(d) The topologies on X induced by two equivalent norms coincide.

Solution.

(a) Let $\|\cdot\|$ be a norm on X. We want to show that $d(x, y):=\|x-y\|$ for every $x, y \in X$ defines a metric on X.
Positivity. Clearly $d(x, y) \geq 0$. Moreover, $d(x, y)=0 \Leftrightarrow x-y=0 \Leftrightarrow x=y$.
Symmetry. For every $x, y \in X$, we have

$$
d(x, y)=\|x-y\|=\|-(y-x)\|=|-1|\|y-x\|=\|y-x\|=d(y, x) .
$$

Triangle inequality. For every $x, y, z \in X$, we have

$$
d(x, y)=\|x-y\| \leq\|x-z\|+\|z-y\|=d(x, z)+d(z, y) .
$$

(b) Let d be a metric on X. We claim that that $\|\cdot\|_{d}:=d(\cdot, 0): X \times X \rightarrow[0,+\infty)$ is a norm on X such that $d(x, y)=\|x-y\|$, for every $x, y \in X$. First, we show that $\|\cdot\|_{d}$ is a norm. The positivity of $\|\cdot\|_{d}$ is clear.
Homogeneity. Let $\lambda \in \mathbb{K}$ and $x \in X$. Then

$$
\|\lambda x\|_{d}=d(\lambda x, 0)=d(\lambda x, \lambda 0)=|\lambda| d(x, 0)=|\lambda|\|x\|_{d} .
$$

Prof. P. Hintz
Assistant: R. Caniato

Functional Analysis I
 Exercise Sheet 1

Triangle inequality. Let $x, y \in X$. Then
$\|x+y\|_{d}=d(x+y, 0) \leq d(x+y, 0+y)+d(y, 0)=d(x, 0)+d(y, 0)=\|x\|_{d}+\|y\|_{d}$.
Thus, we have proved that $\|\cdot\|_{d}$ is a norm on X. Moreover, for every $x, y \in X$, we have

$$
\|x-y\|_{d}=d(x-y, 0)=d(x+(-y), y+(-y))=d(x, y) .
$$

Our claim follows. Since the fact that the distance d induced by a norm on X as in point (a) is translation invariant and homogeneous is straightforward, the full statement follows.
(c) Let $\|\cdot\|$ be any norm on X. Consider a sequence $\left(\left(\lambda_{n}, x_{n}\right)\right)_{n \in \mathbb{N}} \subset \mathbb{K} \times X$ such that $\left(\lambda_{n}, x_{n}\right) \rightarrow(\lambda, x) \in \mathbb{K} \times X$. Then

$$
\begin{aligned}
\left\|\lambda_{n} x_{n}-\lambda x\right\| & \leq\left\|\lambda_{n} x_{n}-\lambda_{n} x\right\|+\left\|\lambda_{n} x-\lambda x\right\| \\
& =\left|\lambda_{n}\right|\left\|x_{n}-x\right\|+\left|\lambda_{n}-\lambda\right|\|x\| \rightarrow 0 \quad(n \rightarrow+\infty) .
\end{aligned}
$$

Now let $\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}} \subset X \times X$ be such that $\left(x_{n}, y_{n}\right) \rightarrow(x, y) \in X \times X$. Then

$$
\left\|\left(x_{n}+y_{n}\right)-(x+y)\right\| \leq\left\|x_{n}-x\right\|+\left\|y_{n}-y\right\| \rightarrow 0 \quad(n \rightarrow+\infty)
$$

(d) Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ e two equivalent norms on X inducing respectively the topologies τ_{1} and τ_{2} on X. Let $U \in \tau_{1}$. We want to show that $U \in \tau_{2}$. Indeed, fix any $x \in U$. Since $U \in \tau_{1}$, there exists $r_{1}>0$ such that $\left\{y \in X\right.$ s.t. $\left.\|y-x\|_{1}<r_{1}\right\} \subset U$. Since $\|\cdot\|_{2}$ is equivalent to $\|\cdot\|_{1}$, there exists $C>0$ such that $C\|z\|_{2} \leq\|z\|_{1}$, for every $z \in X$. Hence,

$$
\left\{y \in X \text { s.t. }\|y-x\|_{2}<r_{2}:=\frac{r_{1}}{C}\right\} \subset\left\{y \in X \text { s.t. }\|y-x\|_{1}<r_{1}\right\} \subset U \text {. }
$$

Thus, we have shown that for every given $x \in U$ there exists $r_{2}>0$ such that $\left\{y \in X\right.$ s.t. $\left.\|y-x\|_{2}<r_{2}\right\} \subset U$. Our claim follows.

Analogously, we show that if $U \in \tau_{2}$ then $U \in \tau_{1}$. Hence $\tau_{1}=\tau_{2}$.

Exercise 1.2 Let $C^{0}([0,1])$ be the set of the \mathbb{R}-valued continuous functions on $[0,1]$. Prove the following statements.
(a) $\left(C^{0}([0,1]),\|\cdot\|_{\infty}\right)$ is complete as a normed vector space over \mathbb{R}, where

$$
\|f\|_{\infty}:=\sup _{x \in[0,1]}|f(x)|, \quad \forall f \in C^{0}([0,1]) .
$$

(b) For every $p \in[1,+\infty),\left(C^{0}([0,1]),\|\cdot\|_{p}\right)$ is not complete as a normed vector space over \mathbb{R}, where

$$
\|f\|_{p}:=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{\frac{1}{p}}, \quad \forall f \in C^{0}([0,1])
$$

(c) Let $\left(a_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}$ be a sequence. Given any $p \in[1,+\infty]$, let

$$
\left\|\left(a_{n}\right)_{n \in \mathbb{N}}\right\|_{\ell^{p}}:= \begin{cases}\left(\sum_{n=0}^{+\infty}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}} & \text { if } p<+\infty \\ \sup _{n \in \mathbb{N}}\left|a_{n}\right| & \text { if } p=+\infty\end{cases}
$$

and define

$$
\ell^{p}:=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \text { s.t. }\left\|\left(a_{n}\right)_{n \in \mathbb{N}}\right\|_{\ell_{p}}<+\infty\right\} .
$$

Prove that $\left(\ell^{p},\|\cdot\|_{q}\right)$ is a complete vector space over \mathbb{R} if and only if $1 \leq q \leq p \leq+\infty$.

Solution.

(a) Let $\left(f_{n}\right)_{n \in \mathbb{N}} \subset C^{0}([0,1])$ be a Cauchy sequence with respect to $\|\cdot\|_{\infty}$. Then, for every $x \in[0,1]$ the sequence $\left(f_{n}(x)\right)_{n \in \mathbb{N}} \subset \mathbb{R}$ is Cauchy. By completeness of \mathbb{R}, there exists $f(x) \in \mathbb{R}$ such that $f_{n}(x) \rightarrow f(x)$. We claim that $f_{n} \rightarrow f$ with respect to $\|\cdot\|_{\infty}$. Indeed, given any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left\|f_{n}-f_{m}\right\|_{\infty}<\varepsilon$, for every $n, m \in \mathbb{N}$ such that $n, m \geq N$. Hence,

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|_{\infty}<\varepsilon, \quad \forall n, m \geq N, \forall x \in[0,1] .
$$

By letting $m \rightarrow+\infty$ in the previous inequality we get

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon, \quad \forall n \geq N, \forall x \in[0,1] .
$$

Finally, by taking the supremum over $x \in[0,1]$, we get

$$
\left\|f_{n}-f\right\|_{\infty}<\varepsilon, \quad \forall n \geq N
$$

Hence, our claim follows. Since f is the uniform limit of sequence of continuous functions, $f \in C^{0}([0,1])$. This concludes the proof of the statement.

Prof. P. Hintz
Assistant: R. Caniato

Functional Analysis I
 Exercise Sheet 1

(b) Fix any $p \in[1,+\infty)$. Consider the sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset C^{0}([0,1])$ given by

$$
f_{n}(x):= \begin{cases}0 & \text { if } x \in\left[0, \frac{1}{2}-\frac{1}{n}\right] \\ \left(\frac{n}{2} x+q_{n}\right)^{1 / p} & \text { if } x \in\left[\frac{1}{2}-\frac{1}{n}, \frac{1}{2}+\frac{1}{n}\right] \\ 1 & \text { if } x \in\left[\frac{1}{2}+\frac{1}{n}, 1\right]\end{cases}
$$

where

$$
q_{n}:=\frac{n}{2}\left(\frac{1}{n}-\frac{1}{2}\right)=\frac{2-n}{4} \quad \forall n \in \mathbb{N} .
$$

Define also

$$
f(x):= \begin{cases}0 & \text { if } x \in\left[0, \frac{1}{2}\right) \\ 1 & \text { if } x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Notice that

$$
\begin{aligned}
\left\|f_{n}-f\right\|_{p}^{p} & =\int_{\frac{1}{2}-\frac{1}{n}}^{\frac{1}{2}}\left(\frac{n}{2} x+q_{n}\right) d x+\int_{\frac{1}{2}}^{\frac{1}{2}+\frac{1}{n}}\left(1-\frac{n}{2} x-q_{n}\right) d x \\
& =\frac{n}{4}\left[x^{2}\right]_{\frac{1}{2}-\frac{1}{n}}^{\frac{1}{2}}+\frac{q_{n}}{n}-\frac{n}{4}\left[x^{2}\right]_{\frac{1}{2}}^{\frac{1}{2}+\frac{1}{n}}+\frac{1-q_{n}}{n} \\
& =\frac{1}{n}-\frac{n}{4} \frac{2}{n^{2}}=\frac{1}{n}-\frac{1}{2 n}=\frac{1}{2 n} \rightarrow 0 \quad(n \rightarrow+\infty) .
\end{aligned}
$$

Hence, the sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset C^{0}([0,1])$ converges to the discontinuous function f with respect to the L^{p}-norm. This is enough to show that $\left(C^{0}([0,1]),\|\cdot\|_{p}\right)$ is not a Banach space.
(c) First we show that $\left(\ell^{p},\|\cdot\|_{q}\right)$ is a complete for $1 \leq q \leq p \leq+\infty$. We proceed as follows.

Step 1. We claim that if $\left(a^{(k)}\right)_{k \in \mathbb{N}} \subset \ell^{p}$ is a Cauchy sequence with respect to $\|\cdot\|_{\ell q}$ then $a_{n}^{(k)} \rightarrow a_{n}$ as $k \rightarrow+\infty$ for every fixed $n \in \mathbb{N}$. Indeed, for every $n \in \mathbb{N}$ we have

$$
\left|a_{n}^{(k)}-a_{n}^{(h)}\right| \leq\left\|a^{(k)}-a^{(h)}\right\|_{\ell q} \rightarrow 0 \quad(k, h \rightarrow+\infty) .
$$

Hence, $\left(a_{n}^{(k)}\right)_{k \in \mathbb{N}}$ is Cauchy sequence in \mathbb{R} for every $n \in \mathbb{N}$. By completeness of \mathbb{R}, $a_{n}^{(k)} \rightarrow a_{n}$ as $k \rightarrow+\infty$ for some $a_{n} \in \mathbb{R}$. Our claim follows

Step 2. Define the sequence $a:=\left(a_{n}\right)_{n \in \mathbb{N}}$. We claim that $\left\|a^{(k)}-a\right\|_{\ell q} \rightarrow 0$ as $k \rightarrow+\infty$. Indeed, given any $\varepsilon>0$ there exists $K \in \mathbb{N}$ such that $\left\|a^{(k)}-a^{(h)}\right\|_{\ell^{q}}<\varepsilon$ whenever $k, h \geq K$. Thus, we have

$$
\left(\sum_{n=0}^{N}\left|a_{n}^{(k)}-a_{n}^{(h)}\right|^{q}\right)^{\frac{1}{q}} \leq\left\|a^{(k)}-a^{(h)}\right\|_{\ell^{q}}<\varepsilon \quad \forall k, h \geq K, \forall N \in \mathbb{N} .
$$

in case $q<+\infty$ and

$$
\left|a_{n}^{(k)}-a_{n}^{(h)}\right| \leq\left\|a^{(k)}-a^{(h)}\right\|_{\ell^{q}}<\varepsilon \quad \forall k, h \geq K, \forall n \in \mathbb{N},
$$

in case $q=+\infty$. By taking the limit as $h \rightarrow+\infty$ in the previous inequalities we get

$$
\left(\sum_{n=0}^{N}\left|a_{n}^{(k)}-a_{n}\right|^{q}\right)^{\frac{1}{q}} \leq\left\|a^{(k)}-a^{(h)}\right\|_{\ell^{q}}<\varepsilon \quad \forall k \geq K, \forall N \in \mathbb{N} .
$$

in case $q<+\infty$ and

$$
\left|a_{n}^{(k)}-a_{n}\right| \leq\left\|a^{(k)}-a^{(h)}\right\|_{\ell^{q}}<\varepsilon \quad \forall k \geq K, \forall n \in \mathbb{N} .
$$

By passing to the limit as $N \rightarrow+\infty$ in case $q<+\infty$ and taking the supremum over $n \in \mathbb{N}$ in case $q=+\infty$ we finally get

$$
\left\|a^{(k)}-a\right\|_{\ell^{q}}<\varepsilon \quad \forall k \geq K
$$

This concludes the proof of the claim.
Step 3. We claim that $\|x\|_{\ell^{p}} \leq 1$, for every $x \in \ell^{q}$ such that $\|x\|_{\ell^{q}}=1$. If $q=p$ the statement is trivial so we just focus on the case $q<p$. If $p=+\infty$, then we notice that

$$
\left|x_{n}\right|=\left(\left|x_{n}\right|^{q}\right)^{\frac{1}{q}} \leq\|x\|_{\ell^{q}}=1,
$$

which implies $\|x\|_{\ell_{\infty}} \leq 1$. If $p<+\infty$, then we notice that $\left|x_{n}\right|^{p} \leq\left|x_{n}\right|^{q}$ for every $n \in \mathbb{N}$ because $\left|x_{n}\right| \leq 1$ for every $n \in \mathbb{N}$ and $q<p$. Hence

$$
\|x\|_{\ell^{p}}=\left(\sum_{n=0}^{+\infty}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{n=0}^{+\infty}\left|x_{n}\right|^{q}\right)^{\frac{1}{p}}=\|x\|_{\ell^{q}}^{\frac{q}{p}}=1 .
$$

Hence, our claim follows.
Step 4. We claim that $a \in \ell^{p}$. First we notice that $a \in \ell^{q}$. Indeed, fix any $k_{0} \in \mathbb{N}$ such that $\left\|a^{(k)}-a\right\|_{\ell q} \leq 1$ and notice that

$$
\|a\|_{\ell^{q}} \leq\left\|a^{\left(k_{0}\right)}\right\|_{\ell^{q}}+\left\|a^{\left(k_{0}\right)}-a\right\|_{\ell^{q}} \leq\left\|a^{\left(k_{0}\right)}\right\|_{\ell^{q}}+1<+\infty .
$$

But then, by defining

$$
x=\frac{a}{\|a\|_{\ell^{q}}}
$$

and applying Step 3 to $x \in \ell^{q}$ we get $\|x\|_{\ell^{p}} \leq 1$, which implies $\|a\|_{\ell^{p}} \leq\|a\|_{\ell^{q}}<+\infty$. The claim follows and we have proved the completeness of the normed vector space $\left(\ell^{p},\|\cdot\|_{q}\right)$ whenever $1 \leq q \leq p \leq+\infty$.

Now, we want to show that ($\ell^{p},\|\cdot\|_{q}$) is not complete if $1 \leq p<q \leq+\infty$. First we face the case $q<+\infty$ and we consider the sequence $\left(a^{(k)}\right)_{k \in \mathbb{N}} \subset \ell^{p}$ given by

$$
a_{n}^{(k)}:=\left(\frac{1}{n}\right)^{\frac{1}{p}+\frac{1}{k}}, \quad \forall k \in \mathbb{N}, \forall n \in \mathbb{N} .
$$

By dominated convergence one easily proves that $a^{(k)} \rightarrow a=\left(a_{n}\right)_{n \in \mathbb{N}}$ with respect to $\|\cdot\|_{\ell q}$, with

$$
a_{n}:=\left(\frac{1}{n}\right)^{\frac{1}{p}}, \quad \forall n \in \mathbb{N} .
$$

Since $a \notin \ell^{p}$, we conclude that $\left(\ell^{p},\|\cdot\|_{q}\right)$ is not complete if $1 \leq p<q<+\infty$. In case $q=+\infty$, we consider the sequence $\left(a^{(k)}\right)_{k \in \mathbb{N}} \subset \ell^{p}$ given by

$$
a_{n}^{(k)}:=\left\{\begin{array}{ll}
\left(\frac{1}{n}\right)^{\frac{1}{p}} & \text { if } n<k, \\
0 & \text { if } n \geq k,
\end{array} \quad \forall k \in \mathbb{N}, \forall n \in \mathbb{N} .\right.
$$

One easily proves that $a^{(k)} \rightarrow a=\left(a_{n}\right)_{n \in \mathbb{N}}$ with respect to $\|\cdot\|_{\ell^{\infty}}$, with

$$
a_{n}:=\left(\frac{1}{n}\right)^{\frac{1}{p}}, \quad \forall n \in \mathbb{N} .
$$

Since $a \notin \ell^{p}$, we conclude that ($\ell^{p},\|\cdot\|_{\infty}$) is not complete if $1 \leq p<+\infty$.

Exercise 1.3 Let $(X,\|\cdot\|)$ be a normed vector space. Prove that the following are equivalent.
(a) $(X,\|\cdot\|)$ is a Banach space.
(b) For every sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ with $\sum_{n=0}^{+\infty}\left\|x_{n}\right\|<+\infty$ the limit $\lim _{N \rightarrow+\infty} \sum_{n=0}^{N} x_{n}$ exists.

Solution. First we show that (a) implies (b). Consider a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ such that $\sum_{n=0}^{+\infty}\left\|x_{n}\right\|<+\infty$. Define

$$
s_{N}:=\sum_{n=0}^{N} x_{n} \quad \forall N \in \mathbb{N} .
$$

Notice that

$$
\left\|s_{N}-s_{M}\right\| \leq \sum_{n=N}^{M}\left\|x_{n}\right\|, \quad \forall N, M \in \mathbb{N} \text { s.t. } M \geq N
$$

Hence, since $\sum_{n=0}^{+\infty}\left\|x_{n}\right\|<+\infty$, we conclude that the sequence $\left(s_{N}\right)_{N \in \mathbb{N}}$ is a Cauchy sequence in X. Since X is complete, $\left(s_{N}\right)_{N \in \mathbb{N}}$ has a limit in X and (b) follows.

Now we show that (b) implies (a). Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ be a Cauchy sequence in X. Since $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy, we can extract a subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}} \subset X$ such that

$$
\left\|x_{n_{k+1}}-x_{n_{k}}\right\| \leq \frac{1}{2^{k}} \quad \forall k \in \mathbb{N}
$$

Consider the sequence $\left(v_{k}\right)_{k \in \mathbb{N}} \subset X$ given by

$$
v_{k}:=x_{n_{k+1}}-x_{n_{k}} \quad \forall k \in \mathbb{N} .
$$

Notice that

$$
\sum_{k=0}^{+\infty}\left\|v_{k}\right\|=\sum_{k=0}^{+\infty}\left\|x_{n_{k+1}}-x_{n_{k}}\right\| \leq \sum_{k=0}^{+\infty} \frac{1}{2^{k}}=2<+\infty .
$$

Hence, by (b) we conclude that the sequence $\left(s_{k}\right)_{k \in \mathbb{N}} \subset X$ given by

$$
s_{k}:=\sum_{j=0}^{k-1} v_{j}=x_{n_{k}}-x_{n_{0}}
$$

has a limit $s \in X$. Thus,

$$
\lim _{k \rightarrow+\infty} x_{n_{k}}=x_{n_{0}}+\lim _{k \rightarrow+\infty}\left(x_{n_{k}}-x_{n_{0}}\right)=x_{n_{0}}+\lim _{k \rightarrow+\infty} s_{k}=x_{n_{0}}+s=: x \in X .
$$

We claim that $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to x. Indeed, by triangle inequality, we have

$$
\left\|x_{n}-x\right\| \leq\left\|x_{n}-x_{n_{k}}\right\|+\left\|x_{n_{k}}-x\right\| \quad \forall n, k \in \mathbb{N} .
$$

Since $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy, by letting first $n, k \rightarrow+\infty$ in the previous inequality we conclude that

$$
\left\|x_{n}-x\right\| \rightarrow 0 \quad(n \rightarrow+\infty)
$$

and (a) follows.

Exercise 1.4 Let $(X,\|\cdot\|)$ be an infinite dimensional normed vector space over a field $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. Prove that there exists a non-continuous linear map $\ell: X \rightarrow \mathbb{K}$.

Solution. Let $\mathscr{B}=\left\{e_{i}\right\}_{i \in I}$ be a Hamel basis of X such that $\left\|e_{i}\right\|=1$, for every $i \in I$. Since \mathscr{B} is a infinite set by assumption) we can find a countable subset $\left\{e_{i_{n}}\right\}_{n \in \mathbb{N}} \subset \mathscr{B}$. We set $W:=\operatorname{span}\left(\mathscr{B} \backslash\left\{e_{i_{n}}\right\}_{n \in \mathbb{N}}\right)$ and we define

$$
\begin{aligned}
\ell\left(e_{i_{n}}\right) & :=n & \forall n \in \mathbb{N}, \\
\ell(w) & :=0 & \forall w \in W .
\end{aligned}
$$

The previous definitions give a unique linear map $\ell: X \rightarrow \mathbb{K}$. We claim that ℓ is discontinuous. Indeed, consider the sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ given by

$$
x_{n}:=\frac{e_{i_{n}}}{n}, \quad \forall n \in \mathbb{N} .
$$

Clearly, $x_{n} \rightarrow 0$ in X. Nevertheless, $\ell\left(x_{n}\right)=1$ for every $n \in \mathbb{N}$. This contradicts the continuity of of ℓ and our claim follows.

