Exercise 1.1 Let X be a vector space over a field $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Prove the following statements.

- (a) Every norm $\|\cdot\|: X \to [0, +\infty)$ on X induces a metric d on X by $d(x, y) := \|x y\|$, for every $x, y \in X$.
- (b) A metric $d: X \times X \to [0, +\infty)$ on X is induced by a norm (in the sense that there exists a norm $\|\cdot\|$ on X such that $d(x, y) = \|x y\|$, for every $x, y \in X$) if and only if d is homogeneous and translation invariant, i.e.

$$\begin{aligned} d(x+v,y+v) &= d(x,y) & \forall x,y,v \in X, \\ d(\lambda x,\lambda y) &= |\lambda| d(x,y) & \forall x,y \in X, \, \forall \lambda \in \mathbb{K}. \end{aligned}$$

- (c) The operations of scalar multiplication $\cdot : \mathbb{K} \times X \to X$ and addition $+ : X \times X \to X$ are continuous with respect to the topology on X induced by any norm.
- (d) The topologies on X induced by two equivalent norms coincide.

Solution.

(a) Let $\|\cdot\|$ be a norm on X. We want to show that $d(x, y) := \|x - y\|$ for every $x, y \in X$ defines a metric on X.

Positivity. Clearly $d(x, y) \ge 0$. Moreover, $d(x, y) = 0 \Leftrightarrow x - y = 0 \Leftrightarrow x = y$.

Symmetry. For every $x, y \in X$, we have

$$d(x,y) = ||x - y|| = ||-(y - x)|| = |-1|||y - x|| = ||y - x|| = d(y,x).$$

Triangle inequality. For every $x, y, z \in X$, we have

$$d(x,y) = ||x - y|| \le ||x - z|| + ||z - y|| = d(x,z) + d(z,y).$$

(b) Let d be a metric on X. We claim that that $\|\cdot\|_d := d(\cdot, 0) : X \times X \to [0, +\infty)$ is a norm on X such that $d(x, y) = \|x - y\|$, for every $x, y \in X$. First, we show that $\|\cdot\|_d$ is a norm. The positivity of $\|\cdot\|_d$ is clear.

Homogeneity. Let $\lambda \in \mathbb{K}$ and $x \in X$. Then

$$\|\lambda x\|_d = d(\lambda x, 0) = d(\lambda x, \lambda 0) = |\lambda| |d(x, 0) = |\lambda| \|x\|_d.$$

Last modified: 30 September 2022

Triangle inequality. Let $x, y \in X$. Then

$$||x + y||_d = d(x + y, 0) \le d(x + y, 0 + y) + d(y, 0) = d(x, 0) + d(y, 0) = ||x||_d + ||y||_d.$$

Thus, we have proved that $\|\cdot\|_d$ is a norm on X. Moreover, for every $x, y \in X$, we have

$$||x - y||_d = d(x - y, 0) = d(x + (-y), y + (-y)) = d(x, y).$$

Our claim follows. Since the fact that the distance d induced by a norm on X as in point (a) is translation invariant and homogeneous is straightforward, the full statement follows.

(c) Let $\|\cdot\|$ be any norm on X. Consider a sequence $((\lambda_n, x_n))_{n \in \mathbb{N}} \subset \mathbb{K} \times X$ such that $(\lambda_n, x_n) \to (\lambda, x) \in \mathbb{K} \times X$. Then

$$\begin{aligned} \|\lambda_n x_n - \lambda x\| &\leq \|\lambda_n x_n - \lambda_n x\| + \|\lambda_n x - \lambda x\| \\ &= |\lambda_n| \|x_n - x\| + |\lambda_n - \lambda| \|x\| \to 0 \qquad (n \to +\infty) \end{aligned}$$

Now let $((x_n, y_n))_{n \in \mathbb{N}} \subset X \times X$ be such that $(x_n, y_n) \to (x, y) \in X \times X$. Then

 $||(x_n + y_n) - (x + y)|| \le ||x_n - x|| + ||y_n - y|| \to 0 \qquad (n \to +\infty).$

(d) Let $\|\cdot\|_1$ and $\|\cdot\|_2$ e two equivalent norms on X inducing respectively the topologies τ_1 and τ_2 on X. Let $U \in \tau_1$. We want to show that $U \in \tau_2$. Indeed, fix any $x \in U$. Since $U \in \tau_1$, there exists $r_1 > 0$ such that $\{y \in X \text{ s.t. } \|y - x\|_1 < r_1\} \subset U$. Since $\|\cdot\|_2$ is equivalent to $\|\cdot\|_1$, there exists C > 0 such that $C\|z\|_2 \leq \|z\|_1$, for every $z \in X$. Hence,

$$\left\{ y \in X \text{ s.t. } \|y - x\|_2 < r_2 := \frac{r_1}{C} \right\} \subset \left\{ y \in X \text{ s.t. } \|y - x\|_1 < r_1 \right\} \subset U.$$

Thus, we have shown that for every given $x \in U$ there exists $r_2 > 0$ such that $\{y \in X \text{ s.t. } \|y - x\|_2 < r_2\} \subset U$. Our claim follows.

Analogously, we show that if $U \in \tau_2$ then $U \in \tau_1$. Hence $\tau_1 = \tau_2$.

Exercise 1.2 Let $C^0([0,1])$ be the set of the \mathbb{R} -valued continuous functions on [0,1]. Prove the following statements.

(a) $(C^0([0,1]), \|\cdot\|_{\infty})$ is complete as a normed vector space over \mathbb{R} , where

$$||f||_{\infty} := \sup_{x \in [0,1]} |f(x)|, \qquad \forall f \in C^0([0,1]).$$

(b) For every $p \in [1, +\infty)$, $(C^0([0, 1]), \|\cdot\|_p)$ is **not** complete as a normed vector space over \mathbb{R} , where

$$||f||_p := \left(\int_0^1 |f(x)|^p \, dx\right)^{\frac{1}{p}}, \qquad \forall f \in C^0([0,1]).$$

(c) Let $(a_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ be a sequence. Given any $p \in [1, +\infty]$, let

$$\|(a_n)_{n\in\mathbb{N}}\|_{\ell^p} := \begin{cases} \left(\sum_{n=0}^{+\infty} |a_n|^p\right)^{\frac{1}{p}} & \text{if } p < +\infty\\ \sup_{n\in\mathbb{N}} |a_n| & \text{if } p = +\infty. \end{cases}$$

and define

$$\ell^p := \{ (a_n)_{n \in \mathbb{N}} \text{ s.t. } \| (a_n)_{n \in \mathbb{N}} \|_{\ell^p} < +\infty \}.$$

Prove that $(\ell^p, \|\cdot\|_q)$ is a complete vector space over \mathbb{R} if and only if $1 \leq q \leq p \leq +\infty$.

Solution.

(a) Let $(f_n)_{n\in\mathbb{N}} \subset C^0([0,1])$ be a Cauchy sequence with respect to $\|\cdot\|_{\infty}$. Then, for every $x \in [0,1]$ the sequence $(f_n(x))_{n\in\mathbb{N}} \subset \mathbb{R}$ is Cauchy. By completeness of \mathbb{R} , there exists $f(x) \in \mathbb{R}$ such that $f_n(x) \to f(x)$. We claim that $f_n \to f$ with respect to $\|\cdot\|_{\infty}$. Indeed, given any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $\|f_n - f_m\|_{\infty} < \varepsilon$, for every $n, m \in \mathbb{N}$ such that $n, m \geq N$. Hence,

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} < \varepsilon, \qquad \forall n, m \ge N, \, \forall x \in [0, 1].$$

By letting $m \to +\infty$ in the previous inequality we get

$$|f_n(x) - f(x)| < \varepsilon, \qquad \forall n \ge N, \, \forall x \in [0, 1].$$

Finally, by taking the supremum over $x \in [0, 1]$, we get

$$||f_n - f||_{\infty} < \varepsilon, \qquad \forall n \ge N.$$

Hence, our claim follows. Since f is the uniform limit of sequence of continuous functions, $f \in C^0([0, 1])$. This concludes the proof of the statement.

(b) Fix any $p \in [1, +\infty)$. Consider the sequence $(f_n)_{n \in \mathbb{N}} \subset C^0([0, 1])$ given by

$$f_n(x) := \begin{cases} 0 & \text{if } x \in \left[0, \frac{1}{2} - \frac{1}{n}\right], \\ \left(\frac{n}{2}x + q_n\right)^{1/p} & \text{if } x \in \left[\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}\right], \\ 1 & \text{if } x \in \left[\frac{1}{2} + \frac{1}{n}, 1\right], \end{cases}$$

where

$$q_n := \frac{n}{2} \left(\frac{1}{n} - \frac{1}{2} \right) = \frac{2-n}{4} \qquad \forall n \in \mathbb{N}.$$

Define also

$$f(x) := \begin{cases} 0 & \text{if } x \in \left[0, \frac{1}{2}\right), \\ 1 & \text{if } x \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

Notice that

$$\begin{split} \|f_n - f\|_p^p &= \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} \left(\frac{n}{2}x + q_n\right) dx + \int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{n}} \left(1 - \frac{n}{2}x - q_n\right) dx \\ &= \frac{n}{4} \left[x^2\right]_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} + \frac{q_n}{n} - \frac{n}{4} \left[x^2\right]_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{n}} + \frac{1 - q_n}{n} \\ &= \frac{1}{n} - \frac{n}{4} \frac{2}{n^2} = \frac{1}{n} - \frac{1}{2n} = \frac{1}{2n} \to 0 \qquad (n \to +\infty). \end{split}$$

Hence, the sequence $(f_n)_{n \in \mathbb{N}} \subset C^0([0, 1])$ converges to the discontinuous function f with respect to the L^p -norm. This is enough to show that $(C^0([0, 1]), \|\cdot\|_p)$ is not a Banach space.

(c) First we show that $(\ell^p, \|\cdot\|_q)$ is a complete for $1 \le q \le p \le +\infty$. We proceed as follows.

Step 1. We claim that if $(a^{(k)})_{k \in \mathbb{N}} \subset \ell^p$ is a Cauchy sequence with respect to $\|\cdot\|_{\ell^q}$ then $a_n^{(k)} \to a_n$ as $k \to +\infty$ for every fixed $n \in \mathbb{N}$. Indeed, for every $n \in \mathbb{N}$ we have

$$|a_n^{(k)} - a_n^{(h)}| \le ||a^{(k)} - a^{(h)}||_{\ell^q} \to 0 \qquad (k, h \to +\infty).$$

Hence, $(a_n^{(k)})_{k\in\mathbb{N}}$ is Cauchy sequence in \mathbb{R} for every $n \in \mathbb{N}$. By completeness of \mathbb{R} , $a_n^{(k)} \to a_n$ as $k \to +\infty$ for some $a_n \in \mathbb{R}$. Our claim follows

Step 2. Define the sequence $a := (a_n)_{n \in \mathbb{N}}$. We claim that $||a^{(k)} - a||_{\ell^q} \to 0$ as $k \to +\infty$. Indeed, given any $\varepsilon > 0$ there exists $K \in \mathbb{N}$ such that $||a^{(k)} - a^{(h)}||_{\ell^q} < \varepsilon$ whenever $k, h \geq K$. Thus, we have

$$\left(\sum_{n=0}^{N} |a_{n}^{(k)} - a_{n}^{(h)}|^{q}\right)^{\frac{1}{q}} \le ||a^{(k)} - a^{(h)}||_{\ell^{q}} < \varepsilon \qquad \forall k, h \ge K, \, \forall N \in \mathbb{N}$$

in case $q < +\infty$ and

$$|a_n^{(k)} - a_n^{(h)}| \le ||a^{(k)} - a^{(h)}||_{\ell^q} < \varepsilon \qquad \forall k, h \ge K, \, \forall n \in \mathbb{N},$$

in case $q = +\infty$. By taking the limit as $h \to +\infty$ in the previous inequalities we get

$$\left(\sum_{n=0}^{N} |a_n^{(k)} - a_n|^q\right)^{\frac{1}{q}} \le ||a^{(k)} - a^{(h)}||_{\ell^q} < \varepsilon \qquad \forall k \ge K, \, \forall N \in \mathbb{N}.$$

in case $q < +\infty$ and

$$|a_n^{(k)} - a_n| \le ||a^{(k)} - a^{(h)}||_{\ell^q} < \varepsilon \qquad \forall k \ge K, \, \forall n \in \mathbb{N}.$$

By passing to the limit as $N \to +\infty$ in case $q < +\infty$ and taking the supremum over $n \in \mathbb{N}$ in case $q = +\infty$ we finally get

$$||a^{(k)} - a||_{\ell^q} < \varepsilon \qquad \forall k \ge K.$$

This concludes the proof of the claim.

Step 3. We claim that $||x||_{\ell^p} \leq 1$, for every $x \in \ell^q$ such that $||x||_{\ell^q} = 1$. If q = p the statement is trivial so we just focus on the case q < p. If $p = +\infty$, then we notice that

$$|x_n| = (|x_n|^q)^{\frac{1}{q}} \le ||x||_{\ell^q} = 1,$$

which implies $||x||_{\ell^{\infty}} \leq 1$. If $p < +\infty$, then we notice that $|x_n|^p \leq |x_n|^q$ for every $n \in \mathbb{N}$ because $|x_n| \leq 1$ for every $n \in \mathbb{N}$ and q < p. Hence

$$||x||_{\ell^p} = \left(\sum_{n=0}^{+\infty} |x_n|^p\right)^{\frac{1}{p}} \le \left(\sum_{n=0}^{+\infty} |x_n|^q\right)^{\frac{1}{p}} = ||x||_{\ell^q}^{\frac{q}{p}} = 1.$$

Hence, our claim follows.

Step 4. We claim that $a \in \ell^p$. First we notice that $a \in \ell^q$. Indeed, fix any $k_0 \in \mathbb{N}$ such that $||a^{(k)} - a||_{\ell^q} \leq 1$ and notice that

$$||a||_{\ell^q} \le ||a^{(k_0)}||_{\ell^q} + ||a^{(k_0)} - a||_{\ell^q} \le ||a^{(k_0)}||_{\ell^q} + 1 < +\infty.$$

But then, by defining

$$x = \frac{a}{\|a\|_{\ell^q}}$$

and applying Step 3 to $x \in \ell^q$ we get $||x||_{\ell^p} \leq 1$, which implies $||a||_{\ell^p} \leq ||a||_{\ell^q} < +\infty$. The claim follows and we have proved the completeness of the normed vector space $(\ell^p, ||\cdot||_q)$ whenever $1 \leq q \leq p \leq +\infty$.

Now, we want to show that $(\ell^p, \|\cdot\|_q)$ is **not** complete if $1 \le p < q \le +\infty$. First we face the case $q < +\infty$ and we consider the sequence $(a^{(k)})_{k\in\mathbb{N}} \subset \ell^p$ given by

$$a_n^{(k)} := \left(\frac{1}{n}\right)^{\frac{1}{p} + \frac{1}{k}}, \qquad \forall k \in \mathbb{N}, \, \forall n \in \mathbb{N}.$$

By dominated convergence one easily proves that $a^{(k)} \to a = (a_n)_{n \in \mathbb{N}}$ with respect to $\|\cdot\|_{\ell^q}$, with

$$a_n := \left(\frac{1}{n}\right)^{\frac{1}{p}}, \qquad \forall n \in \mathbb{N}.$$

Since $a \notin \ell^p$, we conclude that $(\ell^p, \|\cdot\|_q)$ is not complete if $1 \leq p < q < +\infty$. In case $q = +\infty$, we consider the sequence $(a^{(k)})_{k \in \mathbb{N}} \subset \ell^p$ given by

$$a_n^{(k)} := \begin{cases} \left(\frac{1}{n}\right)^{\frac{1}{p}} & \text{if } n < k, \\ 0 & \text{if } n \ge k, \end{cases} \quad \forall k \in \mathbb{N}, \, \forall n \in \mathbb{N}.$$

One easily proves that $a^{(k)} \to a = (a_n)_{n \in \mathbb{N}}$ with respect to $\|\cdot\|_{\ell^{\infty}}$, with

$$a_n := \left(\frac{1}{n}\right)^{\frac{1}{p}}, \qquad \forall n \in \mathbb{N}.$$

Since $a \notin \ell^p$, we conclude that $(\ell^p, \|\cdot\|_{\infty})$ is not complete if $1 \leq p < +\infty$.

Exercise 1.3 Let $(X, \|\cdot\|)$ be a normed vector space. Prove that the following are equivalent.

(a) $(X, \|\cdot\|)$ is a Banach space.

(b) For every sequence $(x_n)_{n \in \mathbb{N}} \subset X$ with $\sum_{n=0}^{+\infty} ||x_n|| < +\infty$ the limit $\lim_{N \to +\infty} \sum_{n=0}^{N} x_n$ exists.

Solution. First we show that (a) implies (b). Consider a sequence $(x_n)_{n \in \mathbb{N}} \subset X$ such that $\sum_{n=0}^{+\infty} ||x_n|| < +\infty$. Define

$$s_N := \sum_{n=0}^N x_n \qquad \forall N \in \mathbb{N}.$$

Notice that

$$||s_N - s_M|| \le \sum_{n=N}^M ||x_n||, \qquad \forall N, M \in \mathbb{N} \text{ s.t. } M \ge N.$$

Hence, since $\sum_{n=0}^{+\infty} ||x_n|| < +\infty$, we conclude that the sequence $(s_N)_{N \in \mathbb{N}}$ is a Cauchy sequence in X. Since X is complete, $(s_N)_{N \in \mathbb{N}}$ has a limit in X and (b) follows.

Now we show that (b) implies (a). Let $(x_n)_{n \in \mathbb{N}} \subset X$ be a Cauchy sequence in X. Since $(x_n)_{n \in \mathbb{N}}$ is Cauchy, we can extract a subsequence $(x_{n_k})_{k \in \mathbb{N}} \subset X$ such that

$$\|x_{n_{k+1}} - x_{n_k}\| \le \frac{1}{2^k} \qquad \forall k \in \mathbb{N}.$$

Consider the sequence $(v_k)_{k\in\mathbb{N}}\subset X$ given by

$$v_k := x_{n_{k+1}} - x_{n_k} \qquad \forall k \in \mathbb{N}.$$

Notice that

$$\sum_{k=0}^{+\infty} \|v_k\| = \sum_{k=0}^{+\infty} \|x_{n_{k+1}} - x_{n_k}\| \le \sum_{k=0}^{+\infty} \frac{1}{2^k} = 2 < +\infty.$$

Hence, by (b) we conclude that the sequence $(s_k)_{k \in \mathbb{N}} \subset X$ given by

$$s_k := \sum_{j=0}^{k-1} v_j = x_{n_k} - x_{n_0}$$

has a limit $s \in X$. Thus,

$$\lim_{k \to +\infty} x_{n_k} = x_{n_0} + \lim_{k \to +\infty} (x_{n_k} - x_{n_0}) = x_{n_0} + \lim_{k \to +\infty} s_k = x_{n_0} + s =: x \in X.$$

We claim that $(x_n)_{n\in\mathbb{N}}$ converges to x. Indeed, by triangle inequality, we have

 $||x_n - x|| \le ||x_n - x_{n_k}|| + ||x_{n_k} - x|| \qquad \forall n, k \in \mathbb{N}.$

Since $(x_n)_{n\in\mathbb{N}}$ is Cauchy, by letting first $n, k \to +\infty$ in the previous inequality we conclude that

$$||x_n - x|| \to 0 \qquad (n \to +\infty)$$

and (a) follows.

Exercise 1.4 Let $(X, \|\cdot\|)$ be an infinite dimensional normed vector space over a field $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Prove that there exists a non-continuous linear map $\ell : X \to \mathbb{K}$.

Solution. Let $\mathscr{B} = \{e_i\}_{i \in I}$ be a Hamel basis of X such that $||e_i|| = 1$, for every $i \in I$. Since \mathscr{B} is a infinite set by assumption) we can find a countable subset $\{e_{i_n}\}_{n\in\mathbb{N}}\subset\mathscr{B}$. We set $W := \operatorname{span}(\mathscr{B} \smallsetminus \{e_{i_n}\}_{n \in \mathbb{N}})$ and we define

$$\ell(e_{i_n}) := n \qquad \forall n \in \mathbb{N}, \\ \ell(w) := 0 \qquad \forall w \in W.$$

The previous definitions give a unique linear map $\ell : X \to \mathbb{K}$. We claim that ℓ is discontinuous. Indeed, consider the sequence $(x_n)_{n\in\mathbb{N}} \subset X$ given by

$$x_n := \frac{e_{i_n}}{n}, \qquad \forall n \in \mathbb{N}.$$

Clearly, $x_n \to 0$ in X. Nevertheless, $\ell(x_n) = 1$ for every $n \in \mathbb{N}$. This contradicts the continuity of of ℓ and our claim follows.

ETH Zürich Autumn 2022