Exercise 10.1 Let $k \ge j$. Then the inclusion map $C^k([0,1]) \to C^j([0,1])$ is compact if and only if k > j.

Exercise 10.2 Let $m \in \mathbb{N}$ and let $\emptyset \neq \Omega \subset \mathbb{R}^m$ be a bounded open set. Given $k \in L^2(\Omega \times \Omega, \mathbb{C})$, consider the linear operator $K : L^2(\Omega, \mathbb{C}) \to L^2(\Omega, \mathbb{C})$ defined by

$$(Kf)(x) = \int_{\Omega} k(x, y) f(y) dy.$$

- (a) Prove that K is well-defined, i.e., $Kf \in L^2(\Omega, \mathbb{C})$ for any $f \in L^2(\Omega, \mathbb{C})$.
- (b) Prove that K is a compact operator.
- (c) If, in addition, the kernel k satisfies $k(x, y) = \overline{k(y, x)}$ for almost every $(x, y) \in \Omega \times \Omega$, prove that the operator $A : L^2(\Omega, \mathbb{C}) \to L^2(\Omega, \mathbb{C})$, defined by

$$Af = f - Kf,$$

is surjective if and only if it is injective.

Exercise 10.3 Let X, Y be Banach spaces. Show that a bounded linear operator $A: X \to Y$ is Fredholm if and only if it is "invertible modulo compact operators", i.e. there exist $B_1, B_2 \in L(Y, X)$ and compact operators $K_1 \in L(Y), K_2 \in L(X)$ so that

$$AB_1 = I - K_1, \quad B_2A = I - K_2.$$

Exercise 10.4 Suppose that X, Y, Z are Banach spaces, let $P \in L(X, Y)$ and assume that there exists a compact map $J \in L(X, Z)$. Suppose also that there is a constant C > 0 such that for all $x \in X$ one has

$$\|x\|_{X} \le C \left(\|Px\|_{Y} + \|Jx\|_{Z}\right).$$
(1)

(a) If P is injective, show that there is another constant C'>0 such that for all $x\in X$ one has

$$\|x\|_X \le C' \|Px\|_Y.$$

Last modified: 25 November 2022

(b) Without assuming that P is injective show that (1) implies that ker(P) has finite dimension. Hence, prove the existence of a closed subspace W of X with X = ker(P) ⊕ W (i.e. a topological complement W of ker(P) in X). Then exploit part (a) to show that for all x ∈ W one has

$$||x||_X \le C'' ||Px||_Y$$

for some constant C'' > 0.

(c) Assume Z' is yet another Banach space, and there exist a compact operator $J' \in L(Y^*, Z')$ and a constant C > 0 so that for all $y^* \in Y^*$ we have

$$\|y^*\|_{Y^*} \le C \Big(\|P^*y^*\|_{X^*} + \|J'y^*\|_{Z'} \Big).$$

Show that P is Fredholm, and that also P^* is Fredholm.