Exercise 10.1 Let $k \geq j$. Then the inclusion map $C^{k}([0,1]) \rightarrow C^{j}([0,1])$ is compact if and only if $k>j$.

Exercise 10.2 Let $m \in \mathbb{N}$ and let $\emptyset \neq \Omega \subset \mathbb{R}^{m}$ be a bounded open set. Given $k \in L^{2}(\Omega \times \Omega, \mathbb{C})$, consider the linear operator $K: L^{2}(\Omega, \mathbb{C}) \rightarrow L^{2}(\Omega, \mathbb{C})$ defined by

$$
(K f)(x)=\int_{\Omega} k(x, y) f(y) d y
$$

(a) Prove that $K$ is well-defined, i.e., $K f \in L^{2}(\Omega, \mathbb{C})$ for any $f \in L^{2}(\Omega, \mathbb{C})$.
(b) Prove that $K$ is a compact operator.
(c) If, in addition, the kernel $k$ satisfies $k(x, y)=\overline{k(y, x)}$ for almost every $(x, y) \in \Omega \times \Omega$, prove that the operator $A: L^{2}(\Omega, \mathbb{C}) \rightarrow L^{2}(\Omega, \mathbb{C})$, defined by

$$
A f=f-K f
$$

is surjective if and only if it is injective.

Exercise 10.3 Let $X, Y$ be Banach spaces. Show that a bounded linear operator $A: X \rightarrow Y$ is Fredholm if and only if it is "invertible modulo compact operators", i.e. there exist $B_{1}, B_{2} \in L(Y, X)$ and compact operators $K_{1} \in L(Y), K_{2} \in L(X)$ so that

$$
A B_{1}=I-K_{1}, \quad B_{2} A=I-K_{2} .
$$

Exercise 10.4 Suppose that $X, Y, Z$ are Banach spaces, let $P \in L(X, Y)$ and assume that there exists a compact map $J \in L(X, Z)$. Suppose also that there is a constant $C>0$ such that for all $x \in X$ one has

$$
\begin{equation*}
\|x\|_{X} \leq C\left(\|P x\|_{Y}+\|J x\|_{Z}\right) . \tag{1}
\end{equation*}
$$

(a) If $P$ is injective, show that there is another constant $C^{\prime}>0$ such that for all $x \in X$ one has

$$
\|x\|_{X} \leq C^{\prime}\|P x\|_{Y} .
$$

[^0](b) Without assuming that $P$ is injective show that (1) implies that $\operatorname{ker}(P)$ has finite dimension. Hence, prove the existence of a closed subspace $W$ of $X$ with $X=$ $\operatorname{ker}(P) \oplus W$ (i.e. a topological complement $W$ of $\operatorname{ker}(P)$ in $X$ ). Then exploit part (a) to show that for all $x \in W$ one has
$$
\|x\|_{X} \leq C^{\prime \prime}\|P x\|_{Y}
$$
for some constant $C^{\prime \prime}>0$.
(c) Assume $Z^{\prime}$ is yet another Banach space, and there exist a compact operator $J^{\prime} \in$ $L\left(Y^{*}, Z^{\prime}\right)$ and a constant $C>0$ so that for all $y^{*} \in Y^{*}$ we have
$$
\left\|y^{*}\right\|_{Y^{*}} \leq C\left(\left\|P^{*} y^{*}\right\|_{X^{*}}+\left\|J^{\prime} y^{*}\right\|_{Z^{\prime}}\right)
$$

Show that $P$ is Fredholm, and that also $P^{*}$ is Fredholm.


[^0]:    Last modified: 25 November 2022

