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Exercise 10.1 Let k ≥ j. Then the inclusion map Ck([0, 1]) → Cj([0, 1]) is compact if
and only if k > j.

Solution. First, notice that the inclusion Ck([0, 1]) → Ck([0, 1]) is just the identity
map on Ck([0, 1]). Since space Ck([0, 1]) is an infinite dimensional normed vector space,
the identity map cannot be compact. Hence, we just need to show that the inclusion
Ck([0, 1]) → Cj([0, 1]) is compact if k > j in order to get our statement.

Second, notice that the inclusion Ck([0, 1]) → Cj([0, 1]) is continuous for every k ≥ j,
Indeed,

∥u∥Cj([0,1]) ≤ ∥u∥Ck([0,1]) ∀ u ∈ Ck([0, 1]) (1)

whenever k ≥ j. Hence, we just need to show that the inclusion Ck+1([0, 1]) → Ck([0, 1])
is compact for every k ∈ N in order to get our statement. Indeed, once we have shown
this, given any k, ∈ N with k > j it just suffices to factorise Ck([0, 1]) → Ck−1([0, 1]) →
Cj([0, 1]). Since the first inclusion is compact and the second is continuous, we get that
their composition is compact and we are done.

We reduced ourself to prove that that the inclusion Ck+1([0, 1]) → Ck([0, 1]) is compact
for every k ∈ N. We argue by induction on k ∈ N.

Base of the induction. We need to show that the inclusion C1([0, 1]) → C0([0, 1]) is
compact. This is a consequence of the Arzelà-Ascoli theorem which was already proved
in class.

Induction step. Assume that the inclusion Cj+1([0, 1]) → Cj([0, 1]) is compact for
every j = 0, ..., k. We want to show that Ck+2([0, 1]) → Ck+1([0, 1]) is compact. Pick
any sequence {un}n∈N lying in the unit ball in Ck+2([0, 1]). By (1), we have that
{un}n∈N lies in the unit ball in Ck+1([0, 1]). By the induction hypothesis, there exists
a subsequence {uni

}i∈N of {un}n∈N that converges to a limit u ∈ Ck([0, 1]) with respect
to the norm on Ck([0, 1]). Now notice that the sequence {u(k+1)

ni
}i∈N lies in the unit ball

in C1([0, 1]). Hence, there exists a subsequence (not relabeled) such that {u(k+1)
ni

}i∈N
converges uniformly in C0([0, 1]) to a limit v ∈ C0([0, 1]). Now we fix any x ∈ (0, 1) and
h > 0 such that x + h ∈ [0, 1] and we estimate

|u(k)(x + h) − u(k)(x) − hv(x)| = |u(k)(x + h) − u(k)
ni

(x + h)| + |u(k)
ni

(x) − u(k)(x)|
+ |u(k)

ni
(x + h) − u(k)

ni
(x) − hv(x)|

≤ 2∥u(k)
ni

− u(k)∥C0([0,1]) +
∣∣∣∣∣
∫ x+h

x
u

(k+1)
ni (t) − v(x) dt

∣∣∣∣∣
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≤ 2∥u(k)
ni

− u(k)∥C0([0,1]) +
∫ x+h

x
|u(k+1)

ni (t) − v(x)| dt

≤ 2∥u(k)
ni

− u(k)∥C0([0,1]) +
∫ x+h

x
|u(k+1)

ni (t) − v(t)| dt

+
∫ x+h

x
|v(t) − v(x)| dt

≤ 2∥u(k)
ni

− u(k)∥C0([0,1]) + ∥u(k+1)
ni

− v∥C0([0,1])h

+
∫ x+h

x
|v(t) − v(x)| dt.

By letting i → +∞ in the previous estimate and then dividing both sides by h, we get∣∣∣∣∣u(k)(x + h) − u(k)(x)
h

− v(x)
∣∣∣∣∣ ≤ 1

h

∫ x+h

x
|v(t) − v(x)| dt.

By continuity of v, we get that

lim sup
h→0+

∣∣∣∣∣u(k)(x + h) − u(k)(x)
h

− v(x)
∣∣∣∣∣ ≤ lim sup

h→0+

1
h

∫ x+h

x
|v(t) − v(x)| dt = 0.

This implies that u(k) is differentiable at the point x and its derivative at x is v(x), for every
x ∈ (0, 1). Hence, we have u(k+1) = v ∈ C0([0, 1]). We conclude both u ∈ Ck+1([0, 1])
and {uni

}i∈N converges to u in the norm on Ck+1([0, 1]). The statement follows.

Exercise 10.2 Let m ∈ N and let ∅ ≠ Ω ⊂ Rm be a bounded open set. Given
k ∈ L2(Ω × Ω,C), consider the linear operator K : L2(Ω,C) → L2(Ω,C) defined by

(Kf)(x) =
∫

Ω
k(x, y)f(y)dy.

(a) Prove that K is well-defined, i.e., Kf ∈ L2(Ω,C) for any f ∈ L2(Ω,C).

(b) Prove that K is a compact operator.

(c) If, in addition, the kernel k satisfies k(x, y) = k(y, x) for almost every (x, y) ∈ Ω × Ω,
prove that the operator A : L2(Ω,C) → L2(Ω,C), defined by

Af = f − Kf ,

is surjective if and only if it is injective.

Solution.
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(a) Let f ∈ L2(Ω,C). Then Hölder’s inequality and Tonelli’s theorem imply

∫
Ω

|(Kf)(x)|2dx =
∫

Ω

∣∣∣∣∫
Ω

k(x, y)f(y)dy

∣∣∣∣2 dx ≤
∫

Ω

(∫
Ω

|k(x, y)f(y)|dy
)2

dx

≤
∫

Ω

(∫
Ω

|k(x, y)|2dy
)

∥f∥2
L2(Ω)dx = ∥k∥2

L2(Ω×Ω)∥f∥2
L2(Ω)

Since k ∈ L2(Ω × Ω,C) by assumption, ∥Kf∥L2(Ω,C) ≤ ∥k∥L2(Ω×Ω,C)∥f∥L2(Ω,C) < ∞
follows.

(b) Being a Hilbert space, L2(Ω,C ) is reflexive. Part (d) of Exercise 9.4 implies that
K : L2(Ω,C) → L2(Ω,C) is a compact operator if K maps weakly convergent
sequences to norm-convergent sequences.

Let (fn)n∈N be a sequence in L2(Ω,C) such that fn
w→ f as n → ∞ for some

f ∈ L2(Ω,C). Since k ∈ L2(Ω×Ω,C), Fubini’s theorem implies that k(x, ·) ∈ L2(Ω,C)
for almost every x ∈ Ω. Weak convergence therefore implies

(Kfn) (x) = ⟨k(x, ·), fn⟩L2(Ω,C)
n→∞−→ ⟨k(x, ·), f⟩L2(Ω,C) = (Kf)(x)

for almost every x ∈ Ω. As weakly convergent sequence, (fn)n∈N is bounded: there
exists C ∈ R such that ∥fn∥L2(Ω,C) ≤ C for every n ∈ N. By Hölder’s inequality,

|(Kfn) (x)| ≤
∫

Ω
|k(x, y)fn(y)| dy ≤ ∥k(x, ·)∥L2(Ω) ∥fn∥L2(Ω) ≤ C∥k(x, ·)∥L2(Ω).

The assumption k ∈ L2(Ω × Ω,C) and Fubini’s theorem imply that (the equivalence
class of ) the function x 7→ C∥k(x, ·)∥L2(Ω,C) is in L2(Ω,C). Thus, (Kfn) (x) is
dominated by a function in L2(Ω,C). Since (Kfn) (x) converges pointwise for almost
every x ∈ Ω and since (Kfn) is dominated by a function in L2(Ω,C), Lebesgue’s
dominated convergence theorem implies L2-convergence ∥Kfn − Kf∥L2(Ω,C) → 0 as
n → ∞.

(c) For f, g ∈ L2(Ω,C) using repeatedly Fubini’s theorem we compute:
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(Kf, g)L2 =
∫

Ω
Kf(x)g(x)dx

=
∫

Ω

(∫
Ω

k(x, y)f(y)dy
)

g(x)dx

=
∫

Ω×Ω
k(x, y)g(x)f(y)dxdy

=
∫

Ω
f(y)

(∫
Ω

k(x, y)g(x)dx
)

dy

=
∫

Ω
f(y)

(∫
Ω

k(x, y)g(x)dx
)

dy = (f, K∗g)L2 ,

that is,

(K∗g) (x) =
∫

Ω
k(y, x)g(y)dy

Hence, under the additional assumption that k(x, y) = k(y, x) for a.a. x, y ∈ Ω, the
bounded operator K is self-adjoint. Therefore, the operator A = (1 − K) : L2(Ω) →
L2(Ω) is also self-adjoint.

According to (b), K is a compact operator, which implies that the operator A =
(1 − K) has closed image im(A) ⊆ H. According to Banach’s closed range theorem,
this is equivalent to im(A) = ker (A∗)⊥. Since A∗ = A, we conclude in our setting
that

A surjective ⇔ H = im(A) = ker(A)⊥ ⇔ ker(A) = {0} ⇔ A injective.

Exercise 10.3 Let X, Y be Banach spaces. Show that a bounded linear operator
A : X → Y is Fredholm if and only if it is “invertible modulo compact operators”, i.e.
there exist B1, B2 ∈ L(Y, X) and compact operators K1 ∈ L(Y ), K2 ∈ L(X) so that

AB1 = I − K1, B2A = I − K2.

Solution. First, we show that if A is invertible modulo compact operators then A is
Fredholm. We need to show that dim ker A < +∞ and dim coker A < +∞. Notice that
if x ∈ ker A then x ∈ ker(I − K2). Hence, ker A is a subspace of ker(I − K2). But since
K2 is compact, we have dim ker(I − K2) < +∞ and this implies dim ker A < +∞.

4 4/7



d-math
Prof. P. Hintz
Assistant: R. Caniato

Functional Analysis I
Exercise Sheet 10

ETH Zürich
Autumn 2022

On the other hand, if x ∈ ran(I − K1) then x ∈ ran(A). Thus, ran(I − K1) is a subspace
of ran A, which implies that coker A is a subspace of coker(I − K1). But since K1 is
compact, we have dim coker(I − K2) < +∞ and this implies dim coker A < +∞.

Now we turn to the other implication. Assume that A is Fredholm. Recall (see the
solution of Exercise 3.1), the a closed vector subspace W of a Banach space is topologically
complemented if and only if there exists a bounded linear operator P on such space such
that P 2 = P and ran P = W . We call such an operator the projection operator on W .

Since ker A is finite-dimensional, ker A is topologically complemented in X (see Exercise
3.1-(a)). We call P1 ∈ L(X) the projection operator on ker A and we let V := (I −P1)(X)
be the topological complement of ker A in X. Since coker A is finite-dimensional, ran A
is topologically complemented in Y (see Exercise 3.1-(b)). We call P2 ∈ L(Y ) the
projection operator on ran A. Now, notice that both V and ran A are closed since they
are topologically complemented. Moreover, A : V → ran A is linear, bijective and
continuous. Hence, there is a continuous inverse A−1 : ran A → V . We define then
B1, B2 ∈ L(Y, X) by B1 := (I − P1)A−1 and B2 := A−1P2. We define K1 := P1 and
K2 := I −P2. Notice that both K1 and K2 have finite rank, hence they are both compact.
Moreover,

B1A = I − P1 = I − K1,

AB2 = P2 = I − (I − P2) = I − K2.

The statement follows.

Exercise 10.4 Suppose that X, Y, Z are Banach spaces, let P ∈ L(X, Y ) and assume
that there exists a compact map J ∈ L(X, Z). Suppose also that there is a constant
C > 0 such that for all x ∈ X one has

∥x∥X ≤ C (∥Px∥Y + ∥Jx∥Z) . (2)

(a) If P is injective, show that there is another constant C ′ > 0 such that for all x ∈ X
one has

∥x∥X ≤ C ′∥Px∥Y .

(b) Without assuming that P is injective show that (2) implies that ker(P ) has finite
dimension. Hence, prove the existence of a closed subspace W of X with X =
ker(P ) ⊕ W (i.e. a topological complement W of ker(P ) in X). Then exploit part
(a) to show that for all x ∈ W one has

∥x∥X ≤ C ′′∥Px∥Y

for some constant C ′′ > 0.
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(c) Assume Z ′ is yet another Banach space, and there exist a compact operator J ′ ∈
L(Y ∗, Z ′) and a constant C > 0 so that for all y∗ ∈ Y ∗ we have

∥y∗∥Y ∗ ≤ C
(

∥P ∗y∗∥X∗ + ∥J ′y∗∥Z′

)
.

Show that P is Fredholm, and that also P ∗ is Fredholm.

Solution.

(a) For the sake of a contradiction, assume the claimed inequality is false: thus for any
k ≥ 1 one can find xk ∈ X with ∥xk∥X = 1 and ∥Pxk∥Y ≤ 1

k
. By compactness of

the map J : X → Z one can find Λ ⊂ N such that

Jxk → z∞ in (Z, ∥ · ∥Z) (k → ∞, k ∈ Λ)

At this stage, using (2) with xl − xm in lieu of x, namely

∥xl − xm∥X ≤ C (∥P (xl − xm)∥Y + ∥J (xl − xm)∥Z) .

one gets that the sequence (xk)k∈Λ is Cauchy in (X, ∥ · ∥X) so by completeness
xk → x∞ in (X, ∥ · ∥X) (k → ∞, k ∈ Λ). Since P ∈ L(X, Y ) we have

xk → x∞ =⇒ Pxk → Px∞ (k → ∞, k ∈ Λ)

but one the other hand Pxk → 0 by construction, so we conclude Px∞ = 0 and
hence, by injectivity x∞ = 0. However it should be ∥x∞∥X = 1 by the fact that
∥xk∥X = 1 for any k ≥ 1, contradiction.

(b) Let us prove that ker(P ) has finite dimension by showing that B1(0; ker(P )) is
relatively compact in (X, ∥ · ∥X). To this scope, pick (xk)k∈N ⊂ ker(P ) a sequence
with ∥xk∥X < 1 and let us prove it has a converging subsequence. Observe that
inequality (2), when restricted to x ∈ ker(P ) takes the form

∥x∥X ≤ C∥Jx∥Z .

Hence (arguing as above) one first gets Jxk → z∞(k → ∞, k ∈ Λ), by compactness
of J , and then, by the inequality above, (xk)k∈Λ is Cauchy in (X, ∥ · ∥X) hence
convergent to x∞.
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At this stage, the fact that ker(P ) is topologically complemented in X follows by
Exercise 3.1-(a), so let us write X = ker(P ) ⊕ W with W ⊂ X closed (recall that a
topologically complemented space and its complement are always closed).

Lastly, the restricted operator P ρ : W → Y is linear, bounded and one can invoke
the result of part (i). With W in lieu of X and P ρ in lieu of P to conclude that
∥x∥X ≤ C ′′∥Px∥Z uniformly for x ∈ W ⊂ X, which completes the proof.

(c) By point (b), both ker P and ker P ∗ are finite-dimensional. By Exercise 9.2-(a) we
have that ker P ∗ = (ran P )⊥ and ran P = ⊥(ker P ∗). In particular, ran P is a closed
subspace of Y . Hence, by Exercise 9.1 we have that ker P ∗ = (ran P )⊥ ∼= (Y/ ran P )∗

and we conclude that (Y/ ran P )∗ is finite-dimensional. But then (Y/ ran P )∗∗ is finite-
dimensional, since it has the same dimension of (Y/ ran P )∗. But then since Y/ ran P
embeds isometrically onto (Y/ ran P )∗∗, we get that Y/ ran P is finite-dimensional as
well, i.e. coker P is finite-dimensional. This is sufficies to show that P is Fredholm.

By Exercise 10.3, there exist Q1, Q1 ∈ L(Y, X) and compact operators K1 ∈ L(Y ),
K2 ∈ L(Y ) such that

PQ1 = I − K1 ⇔ Q∗
1P

∗ = I − K∗
1 ,

Q2P = I − K2 ⇔ P ∗Q∗
2 = I − K∗

2 .

By Schauder’s theorem, both K∗
1 and K∗

2 are compact. Hence, P ∗ is invertible
modulo compact operators, which again by Exercise 10.3 implies that P ∗ is Fredholm.
The statement follows.
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