Exercise 10.1 Let $k \ge j$. Then the inclusion map $C^k([0,1]) \to C^j([0,1])$ is compact if and only if k > j.

Solution. First, notice that the inclusion $C^k([0,1]) \to C^k([0,1])$ is just the identity map on $C^k([0,1])$. Since space $C^k([0,1])$ is an infinite dimensional normed vector space, the identity map cannot be compact. Hence, we just need to show that the inclusion $C^k([0,1]) \to C^j([0,1])$ is compact if k > j in order to get our statement.

Second, notice that the inclusion $C^k([0,1]) \to C^j([0,1])$ is continuous for every $k \ge j$, Indeed,

$$\|u\|_{C^{j}([0,1])} \le \|u\|_{C^{k}([0,1])} \qquad \forall u \in C^{k}([0,1])$$
(1)

whenever $k \geq j$. Hence, we just need to show that the inclusion $C^{k+1}([0,1]) \to C^k([0,1])$ is compact for every $k \in \mathbb{N}$ in order to get our statement. Indeed, once we have shown this, given any $k \in \mathbb{N}$ with k > j it just suffices to factorise $C^k([0,1]) \to C^{k-1}([0,1]) \to C^j([0,1])$. Since the first inclusion is compact and the second is continuous, we get that their composition is compact and we are done.

We reduced ourself to prove that the inclusion $C^{k+1}([0,1]) \to C^k([0,1])$ is compact for every $k \in \mathbb{N}$. We argue by induction on $k \in \mathbb{N}$.

Base of the induction. We need to show that the inclusion $C^1([0,1]) \to C^0([0,1])$ is compact. This is a consequence of the Arzelà-Ascoli theorem which was already proved in class.

Induction step. Assume that the inclusion $C^{j+1}([0,1]) \to C^j([0,1])$ is compact for every j = 0, ..., k. We want to show that $C^{k+2}([0,1]) \to C^{k+1}([0,1])$ is compact. Pick any sequence $\{u_n\}_{n\in\mathbb{N}}$ lying in the unit ball in $C^{k+2}([0,1])$. By (1), we have that $\{u_n\}_{n\in\mathbb{N}}$ lies in the unit ball in $C^{k+1}([0,1])$. By the induction hypothesis, there exists a subsequence $\{u_{n_i}\}_{i\in\mathbb{N}}$ of $\{u_n\}_{n\in\mathbb{N}}$ that converges to a limit $u \in C^k([0,1])$ with respect to the norm on $C^k([0,1])$. Now notice that the sequence $\{u_{n_i}^{(k+1)}\}_{i\in\mathbb{N}}$ lies in the unit ball in $C^1([0,1])$. Hence, there exists a subsequence (not relabeled) such that $\{u_{n_i}^{(k+1)}\}_{i\in\mathbb{N}}$ converges uniformly in $C^0([0,1])$ to a limit $v \in C^0([0,1])$. Now we fix any $x \in (0,1)$ and h > 0 such that $x + h \in [0,1]$ and we estimate

$$\begin{aligned} |u^{(k)}(x+h) - u^{(k)}(x) - hv(x)| &= |u^{(k)}(x+h) - u^{(k)}_{n_i}(x+h)| + |u^{(k)}_{n_i}(x) - u^{(k)}(x)| \\ &+ |u^{(k)}_{n_i}(x+h) - u^{(k)}_{n_i}(x) - hv(x)| \\ &\leq 2||u^{(k)}_{n_i} - u^{(k)}||_{C^0([0,1])} + \left| \int_x^{x+h} u^{(k+1)}_{n_i}(t) - v(x) \, dt \right| \end{aligned}$$

Last modified: 2 December 2022

$$\leq 2 \|u_{n_{i}}^{(k)} - u^{(k)}\|_{C^{0}([0,1])} + \int_{x}^{x+h} |u_{n^{i}}^{(k+1)}(t) - v(x)| dt$$

$$\leq 2 \|u_{n_{i}}^{(k)} - u^{(k)}\|_{C^{0}([0,1])} + \int_{x}^{x+h} |u_{n^{i}}^{(k+1)}(t) - v(t)| dt$$

$$+ \int_{x}^{x+h} |v(t) - v(x)| dt$$

$$\leq 2 \|u_{n_{i}}^{(k)} - u^{(k)}\|_{C^{0}([0,1])} + \|u_{n_{i}}^{(k+1)} - v\|_{C^{0}([0,1])}h$$

$$+ \int_{x}^{x+h} |v(t) - v(x)| dt.$$

By letting $i \to +\infty$ in the previous estimate and then dividing both sides by h, we get

$$\left|\frac{u^{(k)}(x+h) - u^{(k)}(x)}{h} - v(x)\right| \le \frac{1}{h} \int_{x}^{x+h} |v(t) - v(x)| \, dt.$$

By continuity of v, we get that

$$\limsup_{h \to 0^+} \left| \frac{u^{(k)}(x+h) - u^{(k)}(x)}{h} - v(x) \right| \le \limsup_{h \to 0^+} \frac{1}{h} \int_x^{x+h} |v(t) - v(x)| \, dt = 0.$$

This implies that $u^{(k)}$ is differentiable at the point x and its derivative at x is v(x), for every $x \in (0, 1)$. Hence, we have $u^{(k+1)} = v \in C^0([0, 1])$. We conclude both $u \in C^{k+1}([0, 1])$ and $\{u_{n_i}\}_{i \in \mathbb{N}}$ converges to u in the norm on $C^{k+1}([0, 1])$. The statement follows. \Box

Exercise 10.2 Let $m \in \mathbb{N}$ and let $\emptyset \neq \Omega \subset \mathbb{R}^m$ be a bounded open set. Given $k \in L^2(\Omega \times \Omega, \mathbb{C})$, consider the linear operator $K : L^2(\Omega, \mathbb{C}) \to L^2(\Omega, \mathbb{C})$ defined by

$$(Kf)(x) = \int_{\Omega} k(x, y) f(y) dy.$$

- (a) Prove that K is well-defined, i.e., $Kf \in L^2(\Omega, \mathbb{C})$ for any $f \in L^2(\Omega, \mathbb{C})$.
- (b) Prove that K is a compact operator.
- (c) If, in addition, the kernel k satisfies $k(x, y) = \overline{k(y, x)}$ for almost every $(x, y) \in \Omega \times \Omega$, prove that the operator $A : L^2(\Omega, \mathbb{C}) \to L^2(\Omega, \mathbb{C})$, defined by

$$Af = f - Kf,$$

is surjective if and only if it is injective.

Solution.

(a) Let $f \in L^2(\Omega, \mathbb{C})$. Then Hölder's inequality and Tonelli's theorem imply

$$\begin{split} \int_{\Omega} |(Kf)(x)|^2 dx &= \int_{\Omega} \left| \int_{\Omega} k(x,y) f(y) dy \right|^2 dx \leq \int_{\Omega} \left(\int_{\Omega} |k(x,y) f(y)| dy \right)^2 dx \\ &\leq \int_{\Omega} \left(\int_{\Omega} |k(x,y)|^2 dy \right) \|f\|_{L^2(\Omega)}^2 dx = \|k\|_{L^2(\Omega \times \Omega)}^2 \|f\|_{L^2(\Omega)}^2 \end{split}$$

Since $k \in L^2(\Omega \times \Omega, \mathbb{C})$ by assumption, $\|Kf\|_{L^2(\Omega, \mathbb{C})} \leq \|k\|_{L^2(\Omega \times \Omega, \mathbb{C})} \|f\|_{L^2(\Omega, \mathbb{C})} < \infty$ follows.

(b) Being a Hilbert space, $L^2(\Omega, \mathbb{C})$ is reflexive. Part (d) of Exercise 9.4 implies that $K : L^2(\Omega, \mathbb{C}) \to L^2(\Omega, \mathbb{C})$ is a compact operator if K maps weakly convergent sequences to norm-convergent sequences.

Let $(f_n)_{n\in\mathbb{N}}$ be a sequence in $L^2(\Omega,\mathbb{C})$ such that $f_n \xrightarrow{w} f$ as $n \to \infty$ for some $f \in L^2(\Omega,\mathbb{C})$. Since $k \in L^2(\Omega \times \Omega,\mathbb{C})$, Fubini's theorem implies that $k(x, \cdot) \in L^2(\Omega,\mathbb{C})$ for almost every $x \in \Omega$. Weak convergence therefore implies

$$(Kf_n)(x) = \langle k(x, \cdot), f_n \rangle_{L^2(\Omega, \mathbb{C})} \xrightarrow{n \to \infty} \langle k(x, \cdot), f \rangle_{L^2(\Omega, \mathbb{C})} = (Kf)(x)$$

for almost every $x \in \Omega$. As weakly convergent sequence, $(f_n)_{n \in \mathbb{N}}$ is bounded: there exists $C \in \mathbb{R}$ such that $||f_n||_{L^2(\Omega,\mathbb{C})} \leq C$ for every $n \in \mathbb{N}$. By Hölder's inequality,

$$|(Kf_n)(x)| \le \int_{\Omega} |k(x,y)f_n(y)| \, dy \le ||k(x,\cdot)||_{L^2(\Omega)} \, ||f_n||_{L^2(\Omega)} \le C ||k(x,\cdot)||_{L^2(\Omega)}$$

The assumption $k \in L^2(\Omega \times \Omega, \mathbb{C})$ and Fubini's theorem imply that (the equivalence class of) the function $x \mapsto C \|k(x, \cdot)\|_{L^2(\Omega, \mathbb{C})}$ is in $L^2(\Omega, \mathbb{C})$. Thus, $(Kf_n)(x)$ is dominated by a function in $L^2(\Omega, \mathbb{C})$. Since $(Kf_n)(x)$ converges pointwise for almost every $x \in \Omega$ and since (Kf_n) is dominated by a function in $L^2(\Omega, \mathbb{C})$, Lebesgue's dominated convergence theorem implies L^2 -convergence $\|Kf_n - Kf\|_{L^2(\Omega, \mathbb{C})} \to 0$ as $n \to \infty$.

(c) For $f, g \in L^2(\Omega, \mathbb{C})$ using repeatedly Fubini's theorem we compute:

$$\begin{split} (Kf,g)_{L^2} &= \int_{\Omega} Kf(x)\overline{g(x)}dx \\ &= \int_{\Omega} \left(\int_{\Omega} k(x,y)f(y)dy \right) \overline{g(x)}dx \\ &= \int_{\Omega \times \Omega} k(x,y)\overline{g(x)}f(y)dxdy \\ &= \int_{\Omega} f(y) \left(\int_{\Omega} k(x,y)\overline{g(x)}dx \right) dy \\ &= \int_{\Omega} f(y) \overline{\left(\int_{\Omega} \overline{k(x,y)}g(x)dx \right)}dy = (f,K^*g)_{L^2} \,, \end{split}$$

that is,

$$(K^*g)(x) = \int_{\Omega} \overline{k(y,x)}g(y)dy$$

Hence, under the additional assumption that $k(x, y) = \overline{k(y, x)}$ for a.a. $x, y \in \Omega$, the bounded operator K is self-adjoint. Therefore, the operator $A = (1 - K) : L^2(\Omega) \to L^2(\Omega)$ is also self-adjoint.

According to (b), K is a compact operator, which implies that the operator A = (1 - K) has closed image $im(A) \subseteq H$. According to Banach's closed range theorem, this is equivalent to $im(A) = \ker (A^*)^{\perp}$. Since $A^* = A$, we conclude in our setting that

A surjective
$$\Leftrightarrow H = \operatorname{im}(A) = \operatorname{ker}(A)^{\perp} \Leftrightarrow \operatorname{ker}(A) = \{0\} \Leftrightarrow A \text{ injective.}$$

Exercise 10.3 Let X, Y be Banach spaces. Show that a bounded linear operator $A: X \to Y$ is Fredholm if and only if it is "invertible modulo compact operators", i.e. there exist $B_1, B_2 \in L(Y, X)$ and compact operators $K_1 \in L(Y), K_2 \in L(X)$ so that

$$AB_1 = I - K_1, \quad B_2A = I - K_2.$$

Solution. First, we show that if A is invertible modulo compact operators then A is Fredholm. We need to show that dim ker $A < +\infty$ and dim coker $A < +\infty$. Notice that if $x \in \ker A$ then $x \in \ker(I - K_2)$. Hence, ker A is a subspace of ker $(I - K_2)$. But since K_2 is compact, we have dim ker $(I - K_2) < +\infty$ and this implies dim ker $A < +\infty$.

4/7

On the other hand, if $x \in \operatorname{ran}(I - K_1)$ then $x \in \operatorname{ran}(A)$. Thus, $\operatorname{ran}(I - K_1)$ is a subspace of ran A, which implies that coker A is a subspace of $\operatorname{coker}(I - K_1)$. But since K_1 is compact, we have dim $\operatorname{coker}(I - K_2) < +\infty$ and this implies dim $\operatorname{coker} A < +\infty$.

Now we turn to the other implication. Assume that A is Fredholm. Recall (see the solution of Exercise 3.1), the a closed vector subspace W of a Banach space is topologically complemented if and only if there exists a bounded linear operator P on such space such that $P^2 = P$ and ran P = W. We call such an operator the *projection operator* on W.

Since ker A is finite-dimensional, ker A is topologically complemented in X (see Exercise 3.1-(a)). We call $P_1 \in L(X)$ the projection operator on ker A and we let $V := (I - P_1)(X)$ be the topological complement of ker A in X. Since coker A is finite-dimensional, ran A is topologically complemented in Y (see Exercise 3.1-(b)). We call $P_2 \in L(Y)$ the projection operator on ran A. Now, notice that both V and ran A are closed since they are topologically complemented. Moreover, $A : V \to \operatorname{ran} A$ is linear, bijective and continuous. Hence, there is a continuous inverse $A^{-1} : \operatorname{ran} A \to V$. We define then $B_1, B_2 \in L(Y, X)$ by $B_1 := (I - P_1)A^{-1}$ and $B_2 := A^{-1}P_2$. We define $K_1 := P_1$ and $K_2 := I - P_2$. Notice that both K_1 and K_2 have finite rank, hence they are both compact. Moreover,

$$B_1A = I - P_1 = I - K_1,$$

 $AB_2 = P_2 = I - (I - P_2) = I - K_2.$

The statement follows.

Exercise 10.4 Suppose that X, Y, Z are Banach spaces, let $P \in L(X, Y)$ and assume that there exists a compact map $J \in L(X, Z)$. Suppose also that there is a constant C > 0 such that for all $x \in X$ one has

$$\|x\|_{X} \le C \left(\|Px\|_{Y} + \|Jx\|_{Z}\right).$$
⁽²⁾

(a) If P is injective, show that there is another constant C' > 0 such that for all $x \in X$ one has

$$\|x\|_X \le C' \|Px\|_Y$$

(b) Without assuming that P is injective show that (2) implies that ker(P) has finite dimension. Hence, prove the existence of a closed subspace W of X with X = ker(P) ⊕ W (i.e. a topological complement W of ker(P) in X). Then exploit part (a) to show that for all x ∈ W one has

$$\|x\|_X \le C'' \|Px\|_Y$$

for some constant C'' > 0.

5/7

(c) Assume Z' is yet another Banach space, and there exist a compact operator $J' \in L(Y^*, Z')$ and a constant C > 0 so that for all $y^* \in Y^*$ we have

$$\|y^*\|_{Y^*} \le C \Big(\|P^*y^*\|_{X^*} + \|J'y^*\|_{Z'} \Big).$$

Show that P is Fredholm, and that also P^* is Fredholm.

Solution.

(a) For the sake of a contradiction, assume the claimed inequality is false: thus for any $k \ge 1$ one can find $x_k \in X$ with $||x_k||_X = 1$ and $||Px_k||_Y \le \frac{1}{k}$. By compactness of the map $J: X \to Z$ one can find $\Lambda \subset \mathbb{N}$ such that

$$Jx_k \to z_\infty$$
 in $(Z, \|\cdot\|_Z)$ $(k \to \infty, k \in \Lambda)$

At this stage, using (2) with $x_l - x_m$ in lieu of x, namely

$$||x_{l} - x_{m}||_{X} \leq C \left(||P(x_{l} - x_{m})||_{Y} + ||J(x_{l} - x_{m})||_{Z} \right).$$

one gets that the sequence $(x_k)_{k \in \Lambda}$ is Cauchy in $(X, \|\cdot\|_X)$ so by completeness $x_k \to x_\infty$ in $(X, \|\cdot\|_X)$ $(k \to \infty, k \in \Lambda)$. Since $P \in L(X, Y)$ we have

$$x_k \to x_\infty \Longrightarrow Px_k \to Px_\infty \quad (k \to \infty, k \in \Lambda)$$

but one the other hand $Px_k \to 0$ by construction, so we conclude $Px_{\infty} = 0$ and hence, by injectivity $x_{\infty} = 0$. However it should be $||x_{\infty}||_X = 1$ by the fact that $||x_k||_X = 1$ for any $k \ge 1$, contradiction.

(b) Let us prove that $\ker(P)$ has finite dimension by showing that $B_1(0; \ker(P))$ is relatively compact in $(X, \|\cdot\|_X)$. To this scope, pick $(x_k)_{k\in\mathbb{N}} \subset \ker(P)$ a sequence with $\|x_k\|_X < 1$ and let us prove it has a converging subsequence. Observe that inequality (2), when restricted to $x \in \ker(P)$ takes the form

$$||x||_X \le C ||Jx||_Z.$$

Hence (arguing as above) one first gets $Jx_k \to z_{\infty}(k \to \infty, k \in \Lambda)$, by compactness of J, and then, by the inequality above, $(x_k)_{k \in \Lambda}$ is Cauchy in $(X, \|\cdot\|_X)$ hence convergent to x_{∞} .

6/7

At this stage, the fact that $\ker(P)$ is topologically complemented in X follows by Exercise 3.1-(a), so let us write $X = \ker(P) \oplus W$ with $W \subset X$ closed (recall that a topologically complemented space and its complement are always closed).

Lastly, the restricted operator $P^{\rho}: W \to Y$ is linear, bounded and one can invoke the result of part (i). With W in lieu of X and P^{ρ} in lieu of P to conclude that $\|x\|_X \leq C'' \|Px\|_Z$ uniformly for $x \in W \subset X$, which completes the proof.

(c) By point (b), both ker P and ker P^* are finite-dimensional. By Exercise 9.2-(a) we have that ker $P^* = (\operatorname{ran} P)^{\perp}$ and $\operatorname{ran} P = {}^{\perp}(\ker P^*)$. In particular, $\operatorname{ran} P$ is a closed subspace of Y. Hence, by Exercise 9.1 we have that ker $P^* = (\operatorname{ran} P)^{\perp} \cong (Y/\operatorname{ran} P)^*$ and we conclude that $(Y/\operatorname{ran} P)^*$ is finite-dimensional. But then $(Y/\operatorname{ran} P)^{**}$ is finite-dimensional, since it has the same dimension of $(Y/\operatorname{ran} P)^*$. But then since $Y/\operatorname{ran} P$ embeds isometrically onto $(Y/\operatorname{ran} P)^{**}$, we get that $Y/\operatorname{ran} P$ is finite-dimensional as well, i.e. coker P is finite-dimensional. This is sufficies to show that P is Fredholm.

By Exercise 10.3, there exist $Q_1, Q_1 \in L(Y, X)$ and compact operators $K_1 \in L(Y)$, $K_2 \in L(Y)$ such that

$$PQ_1 = I - K_1 \quad \Leftrightarrow \quad Q_1^* P^* = I - K_1^*,$$

$$Q_2 P = I - K_2 \quad \Leftrightarrow \quad P^* Q_2^* = I - K_2^*.$$

By Schauder's theorem, both K_1^* and K_2^* are compact. Hence, P^* is invertible modulo compact operators, which again by Exercise 10.3 implies that P^* is Fredholm. The statement follows.