## Exercise 11.1

(a) Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ and $\left(Z,\|\cdot\|_{Z}\right)$ be Banach spaces, let $T \in L(X, Y)$ be compact and let $J \in L(Y, Z)$ be injective. Prove that for every $\varepsilon \in(0,+\infty)$, there exists $C \in[0,+\infty)$ such that

$$
\|T x\|_{Y} \leq \varepsilon\|x\|_{X}+C\|J T x\|_{Z} \quad \forall x \in X
$$

(b) Use part (a) to show: for all $\varepsilon>0$ there exists $C$ so that for all $u \in H^{2}\left(\mathbb{S}^{1}\right)$, we have

$$
\|u\|_{H^{1}\left(\mathbb{S}^{1}\right)} \leq \varepsilon\|u\|_{H^{2}\left(\mathbb{S}^{1}\right)}+C\|u\|_{L^{2}\left(\mathbb{S}^{1}\right)} .
$$

Exercise 11.2 Let $H$ be a separable Hilbert space, and let $K \in L(H)$ be a compact self-adjoint operator (i.e. $K=K^{*}$ ). The goal of this exercise is to show that $K$ has an eigenvector.
(a) Show that there exists a vector $v_{0} \in H,\left\|v_{0}\right\|=1$, so that $\left\|K v_{0}\right\|=\|K\|_{L(H)}$.
(b) If $w \in H, w \perp v_{0}$, show that the derivative of $(-1,1) \ni t \mapsto\left\|K\left(v_{0}+t w\right)\right\|^{2}$ at $t=0$ is equal to 0 . Conclude that $K^{2}$ has an eigenvector with eigenvalue $\lambda=\|K\|_{L(H)}^{2}$.
(c) Deduce from (b) that $K$ has an eigenvector with eigenvalue $\lambda_{0} \in\left\{\|K\|_{L(H)},-\|K\|_{L(H)}\right\}$.

Exercise 11.3 Let $H$ be a Hilbert space and let $K \in L(H)$ be a compact operator. Prove the following statements. The goal of this exercise is to give a direct, hands-on proof (i.e. without using the general theory of Fredholm operators) that the index of $I-K$ is 0 when $K$ is a compact operator on a Hilbert space.
(a) $\operatorname{dim}(\operatorname{ker}(I-K))<\infty$.
(b) $\operatorname{im}(I-K)$ is closed.
(c) $\operatorname{im}(I-K)=\left(\operatorname{ker}\left(I-K^{*}\right)\right)^{\perp}$.
(d) $\operatorname{ker}(I-K)=\{0\}$ if and only if $\operatorname{im}(I-K)=H$.

Hint: For " $(\Rightarrow)$ ", assume that $\operatorname{ker}(I-K)=\{0\}$ and $\operatorname{im}(I-K) \neq H$. Show that this assumption leads to the following chain of proper inclusions: $H \supsetneq(I-K)(H) \supsetneq$ $(I-K)^{2}(H) \supsetneq(I-K)^{3}(H) \supsetneq \ldots$ choose now $\left(x_{k}\right)_{k \in \mathbb{N}} \subseteq H$ such that $\left\|x_{k}\right\|=1$, $x_{k} \in(I-K)^{k}(H), x_{k} \in\left((I-K)^{k+1}(H)\right)^{\perp}$ and show that $K x_{k}-K x_{l}$ has norm greater or equal than 1 whenever $k<l$ because $K x_{k}-K x_{l}$ can be written as the difference of $x_{k}$ and an element of $(I-K)^{k+1}(H)$. For " $(\Leftarrow)$, dualize.

[^0](e) $\operatorname{dim}(\operatorname{ker}(I-K))=\operatorname{dim}\left(\operatorname{ker}\left(I-K^{*}\right)\right)$.

Hint: Assume by contradiction that $\operatorname{dim}(\operatorname{ker}(I-K))<\operatorname{dim}\left(\operatorname{im}(I-K)^{\perp}\right)$. Construct an injective compact map $A_{0}: \operatorname{ker}(I-K) \rightarrow \operatorname{im}(I-K)^{\perp}$. Show that this map is not surjective. Extend $A_{0}$ to a compact map $A: H \rightarrow \operatorname{im}(I-K)^{\perp}$ with $\operatorname{im}(A)=\operatorname{im}\left(A_{0}\right)$ by setting $\left.A\right|_{(\operatorname{ker}(I-K))^{\perp}} \equiv 0$. Show that $\operatorname{ker}(I-K-A)=\{0\}$, but $\operatorname{im}(I-K-A) \neq H$. This contradiction now shows $\operatorname{dim}(\operatorname{ker}(I-K)) \geq \operatorname{dim}\left(\operatorname{im}(I-K)^{\perp}\right)$. Finish by dualizing.

Exercise 11.4 Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ and $\left(Z,\|\cdot\|_{Z}\right)$ be Banach spaces, let $A \in L(X, Y)$ and $B \in L(Y, Z)$ be Fredholm. Show that $B A \in L(X, Z)$ is Fredholm.


[^0]:    Last modified: 2 December 2022

