Exercise 11.1

(a) Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be Banach spaces, let $T \in L(X, Y)$ be compact and let $J \in L(Y, Z)$ be injective. Prove that for every $\varepsilon \in (0, +\infty)$, there exists $C \in [0, +\infty)$ such that

$$||Tx||_Y \le \varepsilon ||x||_X + C ||JTx||_Z \qquad \forall x \in X.$$

(b) Use part (a) to show: for all $\varepsilon > 0$ there exists C so that for all $u \in H^2(\mathbb{S}^1)$, we have

 $||u||_{H^1(\mathbb{S}^1)} \le \varepsilon ||u||_{H^2(\mathbb{S}^1)} + C ||u||_{L^2(\mathbb{S}^1)}.$

Exercise 11.2 Let H be a separable Hilbert space, and let $K \in L(H)$ be a compact self-adjoint operator (i.e. $K = K^*$). The goal of this exercise is to show that K has an eigenvector.

- (a) Show that there exists a vector $v_0 \in H$, $||v_0|| = 1$, so that $||Kv_0|| = ||K||_{L(H)}$.
- (b) If $w \in H$, $w \perp v_0$, show that the derivative of $(-1, 1) \ni t \mapsto ||K(v_0 + tw)||^2$ at t = 0 is equal to 0. Conclude that K^2 has an eigenvector with eigenvalue $\lambda = ||K||^2_{L(H)}$.
- (c) Deduce from (b) that K has an eigenvector with eigenvalue $\lambda_0 \in \{ \|K\|_{L(H)}, -\|K\|_{L(H)} \}$.

Exercise 11.3 Let H be a Hilbert space and let $K \in L(H)$ be a compact operator. Prove the following statements. The goal of this exercise is to give a direct, hands-on proof (i.e. without using the general theory of Fredholm operators) that the index of I - K is 0 when K is a compact operator on a Hilbert space.

- (a) $\dim(\ker(I-K)) < \infty$.
- (b) $\operatorname{im}(I K)$ is closed.
- (c) $\operatorname{im}(I K) = (\ker (I K^*))^{\perp}$.
- (d) $\ker(I K) = \{0\}$ if and only if $\operatorname{im}(I K) = H$.

Hint: For "(\Rightarrow)", assume that ker $(I - K) = \{0\}$ and im $(I - K) \neq H$. Show that this assumption leads to the following chain of proper inclusions: $H \supseteq (I - K)(H) \supseteq (I - K)^2(H) \supseteq (I - K)^3(H) \supseteq \ldots$ choose now $(x_k)_{k \in \mathbb{N}} \subseteq H$ such that $||x_k|| = 1$, $x_k \in (I - K)^k(H), x_k \in ((I - K)^{k+1}(H))^{\perp}$ and show that $Kx_k - Kx_l$ has norm greater or equal than 1 whenever k < l because $Kx_k - Kx_l$ can be written as the difference of x_k and an element of $(I - K)^{k+1}(H)$. For " (\Leftarrow), dualize.

1/2

Last modified: 2 December 2022

(e) $\dim(\ker(I-K)) = \dim(\ker(I-K^*)).$

Hint: Assume by contradiction that $\dim(\ker(I-K)) < \dim(\operatorname{im}(I-K)^{\perp})$. Construct an injective compact map $A_0 : \ker(I-K) \to \operatorname{im}(I-K)^{\perp}$. Show that this map is not surjective. Extend A_0 to a compact map $A : H \to \operatorname{im}(I-K)^{\perp}$ with $\operatorname{im}(A) = \operatorname{im}(A_0)$ by setting $A|_{(\ker(I-K))^{\perp}} \equiv 0$. Show that $\ker(I-K-A) = \{0\}$, but $\operatorname{im}(I-K-A) \neq H$. This contradiction now shows $\dim(\ker(I-K)) \geq \dim(\operatorname{im}(I-K)^{\perp})$. Finish by dualizing.

Exercise 11.4 Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be Banach spaces, let $A \in L(X, Y)$ and $B \in L(Y, Z)$ be Fredholm. Show that $BA \in L(X, Z)$ is Fredholm.