Exercise 11.1

(a) Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be Banach spaces, let $T \in L(X, Y)$ be compact and let $J \in L(Y, Z)$ be injective. Prove that for every $\varepsilon \in (0, +\infty)$, there exists $C \in [0, +\infty)$ such that

$$||Tx||_Y \le \varepsilon ||x||_X + C ||JTx||_Z \qquad \forall x \in X.$$

(b) Use part (a) to show: for all $\varepsilon > 0$ there exists C so that for all $u \in H^2(\mathbb{S}^1)$, we have

 $||u||_{H^1(\mathbb{S}^1)} \le \varepsilon ||u||_{H^2(\mathbb{S}^1)} + C ||u||_{L^2(\mathbb{S}^1)}.$

Solution.

(a) Assume by contradiction that the claim is not true. Then there exist $\varepsilon \in (0, \infty)$ and $(x_n)_{n \in \mathbb{N}} \subseteq X$ such that

$$||Tx_n||_Y > \varepsilon ||x_n||_X + n ||JTx_n||_Z \text{ for all } n \in \mathbb{N}.$$

In particular, it holds for every $n \in \mathbb{N}$ that $Tx_n \neq 0$ so that the sequence $(x'_n)_{n \in \mathbb{N}} \subseteq X$, given by $x'_n = \frac{x_n}{\|Tx_n\|_Y}$ for all $n \in \mathbb{N}$, is well-defined and satisfies

$$1 = \|Tx'_n\|_Y > \varepsilon \, \|x'_n\|_X + n \, \|JTx'_n\|_Z \quad \text{ for all } n \in \mathbb{N}.$$

This implies that, on the one hand, $(x'_n)_{n\in\mathbb{N}} \subseteq X$ is bounded and, on the other hand, that $JTx'_n \to 0$ in Z as $n \to \infty$. The boundedness of $(x'_n)_{n\in\mathbb{N}} \subseteq X$ and the assumption that T is compact imply that there exists a subsequence $(x'_{n_k})_{k\in\mathbb{N}}$ such that $(Tx'_{n_k})_{k\in\mathbb{N}} \subseteq Y$ converges to some limit $y \in Y$ as $k \to \infty$. The fact that $||Tx'_n||_Y = 1$ for every $n \in \mathbb{N}$ implies that $||y||_Y = 1$. The assumed continuity of J, on the other hand, implies that $JTx'_{n_k} \to Jy$ in Z as $k \to \infty$. Since $JTx'_n \to 0$ as $n \to \infty$, we conclude that Jy = 0. By injectivity of J, we obtain y = 0. This, however, contradicts $||y||_Y = 1$, which we had already deduced above.

(b) It has been proven in class that the inclusion $I : H^2(\mathbb{S}^1) \to H^1(\mathbb{S}^1)$ is compact. Moreover, it is straightforward to see that the inclusion $J : H^1(\mathbb{S}^1) \to L^2(\mathbb{S}^1)$ is injective. By part (a), the statement follows.

Exercise 11.2 Let H be a separable Hilbert space, and let $K \in L(H)$ be a compact self-adjoint operator (i.e. $K = K^*$). The goal of this exercise is to show that K has an eigenvector.

Last modified: 9 December 2022

- (a) Show that there exists a vector $v_0 \in H$, $||v_0|| = 1$, so that $||Kv_0|| = ||K||_{L(H)}$.
- (b) If $w \in H$, $w \perp v_0$, show that the derivative of $(-1, 1) \ni t \mapsto ||K(v_0 + tw)||^2$ at t = 0 is equal to 0. Conclude that K^2 has an eigenvector with eigenvalue $\lambda = ||K||^2_{L(H)}$.
- (c) Deduce from (b) that K has an eigenvector with eigenvalue $\lambda_0 \in \{ \|K\|_{L(H)}, -\|K\|_{L(H)} \}$.

Solution.

(a) Recall that

$$||K||_{L(H)} = \sup_{||x||_{H}=1} ||Kx||_{H}.$$

Let $(x_k)_{k\in\mathbb{N}}$ be such that $||x_k||_H = 1$ and $||Kx_k||_H \to ||K||_{L(H)}$. Since H is reflexive we have that the unit ball in H is weakly sequentially compact. In particular, there exists a subsequence of $(x_k)_{k\in\mathbb{N}}$ (not relabeled) such that $x_k \xrightarrow{w} x$ in H. Since K is compact on a reflexive space, by Exercise we have that $Kx_k \to Kx$ strongly in Has $k \to +\infty$. Hence $||Kx||_H = ||K||_{L(H)}$. Moreover, since the norm is weakly lower semicontinuous we have $||x||_H \leq 1$. We set

$$v_0 := \frac{x}{\|x\|_H}$$

and we notice that $||v_0||_H = 1$. Moreover,

$$||Kv_0||_H = \frac{||Kx||_H}{||x||_H} \ge ||K||_{L(H)}.$$

By definition of $||K||_{L(H)}$, this implies $||Kv_0||_H = ||K||_{L(H)}$.

(b) By point (a) we have

$$\frac{\|K(v_0 + tw)\|_H^2}{\|v_0 + tw\|_H^2} \le \|K\|_{L(H)}^2 = \|Kv_0\|_H^2, \qquad \forall t \in (-1, 1).$$

Hence, the function

$$(-1,1) \ni t \mapsto \frac{\|K(v_0 + tw)\|_H^2}{\|v_0 + tw\|_H^2}$$

has a global maximum at t = 0. Hence, we have

$$\frac{d}{dt}\Big|_{t=0} \frac{\|K(v_0 + tw)\|_H^2}{\|v_0 + tw\|_H^2} = 0.$$

2/6

Since $w \perp v_0$, we have $||v_0 + tw||_H^2 = 1 + t^2 ||w||_H^2$, for every $t \in (-1, 1)$. Thus,

$$0 = \left. \frac{d}{dt} \right|_{t=0} \frac{\|K(v_0 + tw)\|_H^2}{\|v_0 + tw\|_H^2} = \left. \frac{d}{dt} \right|_{t=0} \|K(v_0 + tw)\|_H^2 = (Kv_0, Kw) = (K^2v_0, w).$$

By arbitrariness of $w \in v_0^{\perp}$ we conclude that $K^2 v_0 = \alpha v_0$, for some $\alpha \in \mathbb{R}$. By scalar product with v_0 in the previous equality we get

$$\alpha = \alpha(v_0, v_0)_H = (K^2 v_0, v_0)_H = (K v_0, K v_0)_H = ||K v_0||_H^2 = ||K||_{L(H)}^2.$$

The statement of point (b) follows.

(c) Let $\lambda := \|K\|_{L(H)}^2 \ge 0$.

$$0 = (K^2 - \lambda I)v_0 = (K - \sqrt{\lambda}I)(K + \sqrt{\lambda}I)v_0$$

Now if $w := (K + \sqrt{\lambda}I)v_0 \neq 0$, then w is an eigenvector of K with eigenvalue $\sqrt{\lambda} = \|K\|_{L(H)}$. If instead $(K + \sqrt{\lambda}I)v_0 = 0$, then v_0 is an eigenvector of K with eigenvalue $-\sqrt{\lambda} = -\|K\|_{L(H)}$. The statement follows.

Exercise 11.3 Let H be a Hilbert space and let $K \in L(H)$ be a compact operator. Prove the following statements. The goal of this exercise is to give a direct, hands-on proof (i.e. without using the general theory of Fredholm operators) that the index of I - K is 0 when K is a compact operator on a Hilbert space.

- (a) $\dim(\ker(I-K)) < \infty$.
- (b) $\operatorname{im}(I K)$ is closed.
- (c) $\operatorname{im}(I K) = (\ker (I K^*))^{\perp}$.
- (d) $\ker(I K) = \{0\}$ if and only if $\operatorname{im}(I K) = H$.

Hint: For "(\Rightarrow)", assume that ker $(I - K) = \{0\}$ and im $(I - K) \neq H$. Show that this assumption leads to the following chain of proper inclusions: $H \supseteq (I - K)(H) \supseteq (I - K)^2(H) \supseteq (I - K)^3(H) \supseteq \ldots$ choose now $(x_k)_{k \in \mathbb{N}} \subseteq H$ such that $||x_k|| = 1$, $x_k \in (I - K)^k(H), x_k \in ((I - K)^{k+1}(H))^{\perp}$ and show that $Kx_k - Kx_l$ has norm greater or equal than 1 whenever k < l because $Kx_k - Kx_l$ can be written as the difference of x_k and an element of $(I - K)^{k+1}(H)$. For " (\Leftarrow), dualize.

(e) $\dim(\ker(I-K)) = \dim(\ker(I-K^*)).$

Hint: Assume by contradiction that dim(ker(I-K)) < dim (im(I-K)^{\perp}). Construct an injective compact map A_0 : ker(I-K) \rightarrow im(I-K)^{\perp}. Show that this map is not surjective. Extend A_0 to a compact map $A : H \rightarrow$ im(I-K)^{\perp} with im(A) = im(A_0) by setting $A|_{(\text{ker}(I-K))^{\perp}} \equiv 0$. Show that ker(I-K-A) = {0}, but im(I-K-A) $\neq H$. This contradiction now shows dim(ker(I-K)) \geq dim (im(I-K)^{\perp}). Finish by dualizing.

Solution.

(a) Assume that dim(ker(I-K)) = ∞ . Then there exists a sequence $(x_n)_{n\in\mathbb{N}} \subseteq \ker(I-K)$ with $(x_n, x_m) = \delta_{nm}$ for all $n, m \in \mathbb{N}$. In particular, $(x_n)_{n\in\mathbb{N}}$ does not have a converging subsequence. By compactness of K and by $x_n = Kx_n$ for every $n \in \mathbb{N}$, the sequence $(x_n)_{n\in\mathbb{N}}$ should have a converging subsequence, though.

Alternatively, restricting K to the closed (and therefore complete) subspace ker(I-K), we are in the situation of a Hilbert/Banach space on which the identity operator is a compact operator or, put differently, in which the closed unit ball is compact. This only ever happens in finite dimensions.

(b) We claim that there exists $\gamma \in (0, \infty)$ so that $||x|| \leq \gamma ||x - Kx||$ for all $x \in (\ker(I - K))^{\perp}$. Indeed, if this was not the case, then there would exist a sequence $(x_n)_{n \in \mathbb{N}} \subseteq (\ker(I - K))^{\perp}$ satisfying $1 = ||x_n|| > n ||x_n - Kx_n||$ for all $n \in \mathbb{N}$. This would imply that $x_n - Kx_n \to 0$ as $n \to \infty$. On the other hand, by compactness of K, we may assume (by passing to a subsequence, if necessary) that $Kx_n \to y$ as $n \to \infty$ for some $y \in H$. Consequentially, we would have that $x_n = (x_n - Kx_n) + Kx_n \to 0 + y = y$ as $n \to \infty$. Hence, we would obtain $y \in (\ker(I - K))^{\perp}, ||y|| = \lim_{n \to \infty} ||x_n|| = 1$, and $Ky = \lim_{n \to \infty} Kx_n = y$. But this is not possible as $y \in (\ker(I - K))^{\perp}$ and Ky = y (i.e., $y \in \ker(I - K)$) would imply that y = 0, contradicting ||y|| = 1.

With $\gamma \in (0, \infty)$ so that $||x|| \leq \gamma ||x - Kx||$ for all $x \in (\ker(I - K))^{\perp}$, we can now conclude that $\operatorname{im}(I - K)$ is closed: Let $(y_n)_{n \in \mathbb{N}} \subseteq \operatorname{im}(I - K)$ be an arbitrary sequence converging to y_{∞} in H. Let $(x_n)_{n \in \mathbb{N}} \subseteq H$ satisfy for all $n \in \mathbb{N}$ that $y_n = x_n - Kx_n$. Denoting by $P \in L(H)$ the orthogonal projection onto the closed subspace $(\ker(I - K))^{\perp}$, we obtain that $(Px_n)_{n \in \mathbb{N}} \subseteq (\ker(I - K))^{\perp}$ (and therefore $x_n - Px_n \in \ker(I - K))$ so that $Px_n - KPx_n = x_n - Kx_n = y_n$ for every $n \in \mathbb{N}$. Now, we can use the previously obtained inequality to verify that $(Px_n)_{n \in \mathbb{N}} \subseteq H$ is a Cauchy sequence:

$$\limsup_{N \to \infty} \sup_{m,n \ge N} \|Px_n - Px_m\| \le \limsup_{N \to \infty} \sup_{m,n \ge N} \gamma \|y_n - y_m\| = 0.$$

4/6

Thus, there exists a limit $x_{\infty} \in H$ of $(Px_n)_{n \in \mathbb{N}}$ and $x_{\infty} - Kx_{\infty} = \lim_{n \to \infty} (I - K)Px_n = \lim_{n \to \infty} y_n = y_{\infty}$, i.e., $y_{\infty} \in \operatorname{im}(I - K)$.

- (c) This follows immediately from the fact that $\overline{\operatorname{im}(I-K)} = (\ker (I-K^*))^{\perp}$ and the fact that $\operatorname{im}(I-K)$ is closed (cp. part (b)).
- (d) "(\Rightarrow)": Assume by contradiction that ker $(I K) = \{0\}$ and im $(I K) \neq H$. We first show by induction that $(I K)^{k+1}(H) \subsetneq (I K)^k(H)$ for every $k \in \mathbb{N}_0$. Indeed, for k = 0, this is just the previous assumption. And if $k \in \mathbb{N}$ is such that $(I - K)^k(H) \subsetneq (I - K)^{k-1}(H)$ but $(I - K)^{k+1}(H) = (I - K)^k(H)$, then we obtain that $x_0 \in (I - K)^{k-1}(H) \setminus (I - K)^k(H)$ gets mapped by I - K to $(I - K)x_0 \in (I - K)^k(H) = (I - K)^{k+1}(H) = (I - K)((I - K)^k(H))$ so that there has to exist $x_1 \in (I - K)^k(H)$ satisfying $(I - K)x_0 = (I - K)x_1$. Hence, $0 \neq x_0 - x_1 \in \ker(I - K)$ (since $x_0 \neq x_1$ as $x_0 \notin (I - K)^k(H)$ while $x_1 \in (I - K)^k(H)$), which contradicts that I - K is injective.

Knowing that - under the assumption that $\ker(I - K) = \{0\}$ and $\operatorname{im}(I - K) \neq H$ - it has to hold for every $k \in \mathbb{N}_0$ that $(I - K)^{k+1}(H) \subsetneq (I - K)^k(H)$ and since $(I - K)^k(H)$ is closed for every $k \in \mathbb{N}$ by part (b), we can now choose a sequence $(x_k)_{k \in \mathbb{N}} \subseteq H$ such that $||x_k|| = 1$ and $x_k \in (I - K)^k(H) \cap \left((I - K)^{k+1}(H)\right)^{\perp}$ for every $k \in \mathbb{N}$. Moreover, note that for all $k, l \in \mathbb{N}$ with k < l it holds that

$$x_{k} - (Kx_{k} - Kx_{l}) = \underbrace{(x_{k} - Kx_{k})}_{\in (I-K)^{k+1}(H)} - \underbrace{(x_{l} - Kx_{l})}_{\in (I-K)^{l+1}(H)} + \underbrace{x_{l}}_{\in (I-K)^{l}(H)} \in (I-K)^{k+1}(H),$$

i.e., $||Kx_k - Kx_l|| \ge \text{dist} (x_k, (I - K)^{k+1}(H)) = ||x_k|| = 1$ (since, sloppily speaking, $Kx_k - Kx_l$ has to cover at least the part of x_k perpendicular to $(I - K)^{k+1}(H)$). In particular, $(Kx_k)_{k \in \mathbb{N}}$ does not have a converging subsequence, although $(x_k)_{k \in \mathbb{N}} \subseteq H$ is a bounded sequence and K is compact.

"(\Leftarrow)": im(I - K) = H implies that ker $(I - K^*) = \{0\}$. By Schauder's theorem K^* is compact. The previous part of the proof hence implies that im $(I - K^*) = H$. Hence, ker $(I - K) = \{0\}$.

(e) Assume for a contradiction that $\dim(\ker(I-K)) < \dim(\ker(I-K^*))$. Since $\ker(I-K^*) = \operatorname{im}(I-K)^{\perp}$, we are assuming that $\dim(\ker(I-K)) < \dim(\operatorname{im}(I-K)^{\perp})$. Since $\ker(I-K)$ is finite-dimensional by part (a) and $\dim(\ker(I-K)) < \dim(\operatorname{im}(I-K)^{\perp})$. $K)^{\perp}$), there exists an injective, but not surjective map $A_0 : \ker(I-K) \to \operatorname{im}(I-K)^{\perp}$. Moreover, since $\ker(I-K)$ is finite-dimensional, A_0 has finite rank and is therefore compact. Define $A : H \to \operatorname{im}(I-K)^{\perp}$ via $A(x+y) = A_0x$ for $x \in \ker(I-K)$, $y \in (\ker(I-K))^{\perp}$. Since A is a compact linear map, K + A is also a linear map (from H to H). Note that (I - K - A)x = 0 implies that $Ax = (I - K)x \in$ $\operatorname{im}(I-K) \cap (\operatorname{im}(I-K))^{\perp} = \{0\}$, hence $x \in \operatorname{ker}(I-K) \cap \operatorname{ker}(A) = \operatorname{ker}(A_0) = \{0\}$. On the other hand, for every $x \in H$ it holds that $(I-K-A)x = (I-K)x - Ax \in \operatorname{im}(I-K) \oplus \operatorname{im}(A) \subsetneq \operatorname{im}(I-K) \oplus (\operatorname{im}(I-K))^{\perp} = H$ since $\operatorname{im}(A) \subsetneq (\operatorname{im}(I-K))^{\perp}$. Hence, we have $\operatorname{ker}(I-K-A) = \{0\}$ and $\operatorname{im}(I-K-A) \neq H$, contradicting part (d). This contradiction now shows $\operatorname{dim}(\operatorname{ker}(I-K)) \ge \operatorname{dim}(\operatorname{ker}(I-K^*))$. Since K^* is, by Schauder's theorem, compact as well, we obtain by the above argument that $\operatorname{dim}(\operatorname{ker}(I-K^*)) \ge \operatorname{dim}(\operatorname{ker}(I-K))$.

Exercise 11.4 Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be Banach spaces, let $A \in L(X, Y)$ and $B \in L(Y, Z)$ be Fredholm. Show that $BA \in L(X, Z)$ is Fredholm.

Solution. We use Exercise 10.3. Since A is Fredholm, and we find $A_1, A_2 \in L(Y, X)$ and compact operators $K_1 \in L(Y)$, $K_2 \in L(X)$ so that

$$AA_1 = I - K_1, \quad A_2A = I - K_2.$$

Again, since B is Fredholm we find $B_1, B_2 \in L(Z, Y)$ and compact operators $\tilde{K}_1 \in L(Z)$, $\tilde{K}_2 \in L(Y)$ so that

$$BB_1 = I - \tilde{K}_1, \quad B_2B = I - \tilde{K}_2.$$

We notice that

$$(BA)(A_1B_1) = B(AA_1)B_1 = B(I - K_1)B_1 = (B - BK_1)B_1 = I - (\tilde{K}_1 + BK_1B_1)$$

$$(A_2B_2)(BA) = A_2(B_2B)A = A_1(I - \tilde{K}_2)A = I - (K_2 + A_1\tilde{K}_2A).$$

Since both $\tilde{K}_1 + BK_1B_1$ and $K_2 + A_1\tilde{K}_2A$ are compact, by Exercise 10.3 the statement follows.