Exercise 11.1

(a) Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ and $\left(Z,\|\cdot\|_{Z}\right)$ be Banach spaces, let $T \in L(X, Y)$ be compact and let $J \in L(Y, Z)$ be injective. Prove that for every $\varepsilon \in(0,+\infty)$, there exists $C \in[0,+\infty)$ such that

$$
\|T x\|_{Y} \leq \varepsilon\|x\|_{X}+C\|J T x\|_{Z} \quad \forall x \in X
$$

(b) Use part (a) to show: for all $\varepsilon>0$ there exists C so that for all $u \in H^{2}\left(\mathbb{S}^{1}\right)$, we have

$$
\|u\|_{H^{1}\left(\mathbb{S}^{1}\right)} \leq \varepsilon\|u\|_{H^{2}\left(\mathbb{S}^{1}\right)}+C\|u\|_{L^{2}\left(\mathbb{S}^{1}\right)}
$$

Solution.

(a) Assume by contradiction that the claim is not true. Then there exist $\varepsilon \in(0, \infty)$ and $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ such that

$$
\left\|T x_{n}\right\|_{Y}>\varepsilon\left\|x_{n}\right\|_{X}+n\left\|J T x_{n}\right\|_{Z} \text { for all } n \in \mathbb{N}
$$

In particular, it holds for every $n \in \mathbb{N}$ that $T x_{n} \neq 0$ so that the sequence $\left(x_{n}^{\prime}\right)_{n \in \mathbb{N}} \subseteq X$, given by $x_{n}^{\prime}=\frac{x_{n}}{\left\|T x_{n}\right\|_{Y}}$ for all $n \in \mathbb{N}$, is well-defined and satisfies

$$
1=\left\|T x_{n}^{\prime}\right\|_{Y}>\varepsilon\left\|x_{n}^{\prime}\right\|_{X}+n\left\|J T x_{n}^{\prime}\right\|_{Z} \quad \text { for all } n \in \mathbb{N}
$$

This implies that, on the one hand, $\left(x_{n}^{\prime}\right)_{n \in \mathbb{N}} \subseteq X$ is bounded and, on the other hand, that $J T x_{n}^{\prime} \rightarrow 0$ in Z as $n \rightarrow \infty$. The boundedness of $\left(x_{n}^{\prime}\right)_{n \in \mathbb{N}} \subseteq X$ and the assumption that T is compact imply that there exists a subsequence $\left(x_{n_{k}}^{\prime}\right)_{k \in \mathbb{N}}$ such that $\left(T x_{n_{k}}^{\prime}\right)_{k \in \mathbb{N}} \subseteq Y$ converges to some limit $y \in Y$ as $k \rightarrow \infty$. The fact that $\left\|T x_{n}^{\prime}\right\|_{Y}=1$ for every $n \in \mathbb{N}$ implies that $\|y\|_{Y}=1$. The assumed continuity of J, on the other hand, implies that $J T x_{n_{k}}^{\prime} \rightarrow J y$ in Z as $k \rightarrow \infty$. Since $J T x_{n}^{\prime} \rightarrow 0$ as $n \rightarrow \infty$, we conclude that $J y=0$. By injectivity of J, we obtain $y=0$. This, however, contradicts $\|y\|_{Y}=1$, which we had already deduced above.
(b) It has been proven in class that the inclusion $I: H^{2}\left(\mathbb{S}^{1}\right) \rightarrow H^{1}\left(\mathbb{S}^{1}\right)$ is compact. Moreover, it is straightforward to see that the inclusion $J: H^{1}\left(\mathbb{S}^{1}\right) \rightarrow L^{2}\left(\mathbb{S}^{1}\right)$ is injective. By part (a), the statement follows.

Exercise 11.2 Let H be a separable Hilbert space, and let $K \in L(H)$ be a compact self-adjoint operator (i.e. $K=K^{*}$). The goal of this exercise is to show that K has an eigenvector.
(a) Show that there exists a vector $v_{0} \in H,\left\|v_{0}\right\|=1$, so that $\left\|K v_{0}\right\|=\|K\|_{L(H)}$.
(b) If $w \in H, w \perp v_{0}$, show that the derivative of $(-1,1) \ni t \mapsto\left\|K\left(v_{0}+t w\right)\right\|^{2}$ at $t=0$ is equal to 0 . Conclude that K^{2} has an eigenvector with eigenvalue $\lambda=\|K\|_{L(H)}^{2}$.
(c) Deduce from (b) that K has an eigenvector with eigenvalue $\lambda_{0} \in\left\{\|K\|_{L(H)},-\|K\|_{L(H)}\right\}$.

Solution.

(a) Recall that

$$
\|K\|_{L(H)}=\sup _{\|x\|_{H}=1}\|K x\|_{H}
$$

Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be such that $\left\|x_{k}\right\|_{H}=1$ and $\left\|K x_{k}\right\|_{H} \rightarrow\|K\|_{L(H)}$. Since H is reflexive we have that the unit ball in H is weakly sequentially compact. In particular, there exists a subsequence of $\left(x_{k}\right)_{k \in \mathbb{N}}$ (not relabeled) such that $x_{k} \xrightarrow{w} x$ in H. Since K is compact on a reflexive space, by Exercise we have that $K x_{k} \rightarrow K x$ strongly in H as $k \rightarrow+\infty$. Hence $\|K x\|_{H}=\|K\|_{L(H)}$. Moreover, since the norm is weakly lower semicontinuous we have $\|x\|_{H} \leq 1$. We set

$$
v_{0}:=\frac{x}{\|x\|_{H}}
$$

and we notice that $\left\|v_{0}\right\|_{H}=1$. Moreover,

$$
\left\|K v_{0}\right\|_{H}=\frac{\|K x\|_{H}}{\|x\|_{H}} \geq\|K\|_{L(H)}
$$

By definition of $\|K\|_{L(H)}$, this implies $\left\|K v_{0}\right\|_{H}=\|K\|_{L(H)}$.
(b) By point (a) we have

$$
\frac{\left\|K\left(v_{0}+t w\right)\right\|_{H}^{2}}{\left\|v_{0}+t w\right\|_{H}^{2}} \leq\|K\|_{L(H)}^{2}=\left\|K v_{0}\right\|_{H}^{2}, \quad \forall t \in(-1,1)
$$

Hence, the function

$$
(-1,1) \ni t \mapsto \frac{\left\|K\left(v_{0}+t w\right)\right\|_{H}^{2}}{\left\|v_{0}+t w\right\|_{H}^{2}}
$$

has a global maximum at $t=0$. Hence, we have

$$
\left.\frac{d}{d t}\right|_{t=0} \frac{\left\|K\left(v_{0}+t w\right)\right\|_{H}^{2}}{\left\|v_{0}+t w\right\|_{H}^{2}}=0 .
$$

Since $w \perp v_{0}$, we have $\left\|v_{0}+t w\right\|_{H}^{2}=1+t^{2}\|w\|_{H}^{2}$, for every $t \in(-1,1)$. Thus,

$$
0=\left.\frac{d}{d t}\right|_{t=0} \frac{\left\|K\left(v_{0}+t w\right)\right\|_{H}^{2}}{\left\|v_{0}+t w\right\|_{H}^{2}}=\left.\frac{d}{d t}\right|_{t=0}\left\|K\left(v_{0}+t w\right)\right\|_{H}^{2}=\left(K v_{0}, K w\right)=\left(K^{2} v_{0}, w\right) .
$$

By arbitrariness of $w \in v_{0}^{\perp}$ we conclude that $K^{2} v_{0}=\alpha v_{0}$, for some $\alpha \in \mathbb{R}$. By scalar product with v_{0} in the previous equality we get

$$
\alpha=\alpha\left(v_{0}, v_{0}\right)_{H}=\left(K^{2} v_{0}, v_{0}\right)_{H}=\left(K v_{0}, K v_{0}\right)_{H}=\left\|K v_{0}\right\|_{H}^{2}=\|K\|_{L(H)}^{2} .
$$

The statement of point (b) follows.
(c) Let $\lambda:=\|K\|_{L(H)}^{2} \geq 0$.

$$
0=\left(K^{2}-\lambda I\right) v_{0}=(K-\sqrt{\lambda} I)(K+\sqrt{\lambda} I) v_{0}
$$

Now if $w:=(K+\sqrt{\lambda} I) v_{0} \neq 0$, then w is an eigenvector of K with eigenvalue $\sqrt{\lambda}=\|K\|_{L(H)}$. If instead $(K+\sqrt{\lambda} I) v_{0}=0$, then v_{0} is an eigenvector of K with eigenvalue $-\sqrt{\lambda}=-\|K\|_{L(H)}$. The statement follows.

Exercise 11.3 Let H be a Hilbert space and let $K \in L(H)$ be a compact operator. Prove the following statements. The goal of this exercise is to give a direct, hands-on proof (i.e. without using the general theory of Fredholm operators) that the index of $I-K$ is 0 when K is a compact operator on a Hilbert space.
(a) $\operatorname{dim}(\operatorname{ker}(I-K))<\infty$.
(b) $\operatorname{im}(I-K)$ is closed.
(c) $\operatorname{im}(I-K)=\left(\operatorname{ker}\left(I-K^{*}\right)\right)^{\perp}$.
(d) $\operatorname{ker}(I-K)=\{0\}$ if and only if $\operatorname{im}(I-K)=H$.

Hint: For " (\Rightarrow) ", assume that $\operatorname{ker}(I-K)=\{0\}$ and $\operatorname{im}(I-K) \neq H$. Show that this assumption leads to the following chain of proper inclusions: $H \supsetneq(I-K)(H) \supsetneq$ $(I-K)^{2}(H) \supsetneq(I-K)^{3}(H) \supsetneq \ldots$ choose now $\left(x_{k}\right)_{k \in \mathbb{N}} \subseteq H$ such that $\left\|x_{k}\right\|=1$, $x_{k} \in(I-K)^{k}(H), x_{k} \in\left((I-K)^{k+1}(H)\right)^{\perp}$ and show that $K x_{k}-K x_{l}$ has norm greater or equal than 1 whenever $k<l$ because $K x_{k}-K x_{l}$ can be written as the difference of x_{k} and an element of $(I-K)^{k+1}(H)$. For " (\Leftarrow), dualize.
(e) $\operatorname{dim}(\operatorname{ker}(I-K))=\operatorname{dim}\left(\operatorname{ker}\left(I-K^{*}\right)\right)$.

Hint: Assume by contradiction that $\operatorname{dim}(\operatorname{ker}(I-K))<\operatorname{dim}\left(\operatorname{im}(I-K)^{\perp}\right)$. Construct an injective compact map $A_{0}: \operatorname{ker}(I-K) \rightarrow \operatorname{im}(I-K)^{\perp}$. Show that this map is not surjective. Extend A_{0} to a compact map $A: H \rightarrow \operatorname{im}(I-K)^{\perp}$ with $\operatorname{im}(A)=\operatorname{im}\left(A_{0}\right)$ by setting $\left.A\right|_{(\operatorname{ker}(I-K))^{\perp}} \equiv 0$. Show that $\operatorname{ker}(I-K-A)=\{0\}$, but $\operatorname{im}(I-K-A) \neq H$. This contradiction now shows $\operatorname{dim}(\operatorname{ker}(I-K)) \geq \operatorname{dim}\left(\operatorname{im}(I-K)^{\perp}\right)$. Finish by dualizing.

Solution.

(a) Assume that $\operatorname{dim}(\operatorname{ker}(I-K))=\infty$. Then there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \operatorname{ker}(I-K)$ with $\left(x_{n}, x_{m}\right)=\delta_{n m}$ for all $n, m \in \mathbb{N}$. In particular, $\left(x_{n}\right)_{n \in \mathbb{N}}$ does not have a converging subsequence. By compactness of K and by $x_{n}=K x_{n}$ for every $n \in \mathbb{N}$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ should have a converging subsequence, though.

Alternatively, restricting K to the closed (and therefore complete) subspace $\operatorname{ker}(I-K)$, we are in the situation of a Hilbert/Banach space on which the identity operator is a compact operator or, put differently, in which the closed unit ball is compact. This only ever happens in finite dimensions.
(b) We claim that there exists $\gamma \in(0, \infty)$ so that $\|x\| \leq \gamma\|x-K x\|$ for all $x \in(\operatorname{ker}(I-$ $K))^{\perp}$. Indeed, if this was not the case, then there would exist a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq$ $(\operatorname{ker}(I-K))^{\perp}$ satisfying $1=\left\|x_{n}\right\|>n\left\|x_{n}-K x_{n}\right\|$ for all $n \in \mathbb{N}$. This would imply that $x_{n}-K x_{n} \rightarrow 0$ as $n \rightarrow \infty$. On the other hand, by compactness of K, we may assume (by passing to a subsequence, if necessary) that $K x_{n} \rightarrow y$ as $n \rightarrow \infty$ for some $y \in H$. Consequentially, we would have that $x_{n}=\left(x_{n}-K x_{n}\right)+K x_{n} \rightarrow 0+y=y$ as $n \rightarrow \infty$. Hence, we would obtain $y \in(\operatorname{ker}(I-K))^{\perp},\|y\|=\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=1$, and $K y=\lim _{n \rightarrow \infty} K x_{n}=y$. But this is not possible as $y \in(\operatorname{ker}(I-K))^{\perp}$ and $K y=y$ (i.e., $y \in \operatorname{ker}(I-K)$) would imply that $y=0$, contradicting $\|y\|=1$.

With $\gamma \in(0, \infty)$ so that $\|x\| \leq \gamma\|x-K x\|$ for all $x \in(\operatorname{ker}(I-K))^{\perp}$, we can now conclude that $\operatorname{im}(I-K)$ is closed: Let $\left(y_{n}\right)_{n \in \mathbb{N}} \subseteq \operatorname{im}(I-K)$ be an arbitrary sequence converging to y_{∞} in H. Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq H$ satisfy for all $n \in \mathbb{N}$ that $y_{n}=x_{n}-K x_{n}$. Denoting by $P \in L(H)$ the orthogonal projection onto the closed subspace $(\operatorname{ker}(I-K))^{\perp}$, we obtain that $\left(P x_{n}\right)_{n \in \mathbb{N}} \subseteq(\operatorname{ker}(I-K))^{\perp}$ (and therefore $\left.x_{n}-P x_{n} \in \operatorname{ker}(I-K)\right)$ so that $P x_{n}-K P x_{n}=x_{n}-K x_{n}=y_{n}$ for every $n \in \mathbb{N}$. Now, we can use the previously obtained inequality to verify that $\left(P x_{n}\right)_{n \in \mathbb{N}} \subseteq H$ is a Cauchy sequence:

$$
\limsup _{N \rightarrow \infty} \sup _{m, n \geq N}\left\|P x_{n}-P x_{m}\right\| \leq \limsup _{N \rightarrow \infty} \sup _{m, n \geq N} \gamma\left\|y_{n}-y_{m}\right\|=0 .
$$

Thus, there exists a limit $x_{\infty} \in H$ of $\left(P x_{n}\right)_{n \in \mathbb{N}}$ and $x_{\infty}-K x_{\infty}=\lim _{n \rightarrow \infty}(I-K) P x_{n}=$ $\lim _{n \rightarrow \infty} y_{n}=y_{\infty}$, i.e., $y_{\infty} \in \operatorname{im}(I-K)$.
(c) This follows immediately from the fact that $\overline{\operatorname{im}(I-K)}=\left(\operatorname{ker}\left(I-K^{*}\right)\right)^{\perp}$ and the fact that $\operatorname{im}(I-K)$ is closed (cp. part (b)).
(d) " \Rightarrow)": Assume by contradiction that $\operatorname{ker}(I-K)=\{0\}$ and $\operatorname{im}(I-K) \neq H$. We first show by induction that $(I-K)^{k+1}(H) \subsetneq(I-K)^{k}(H)$ for every $k \in \mathbb{N}_{0}$. Indeed, for $k=0$, this is just the previous assumption. And if $k \in \mathbb{N}$ is such that $(I-K)^{k}(H) \subsetneq(I-K)^{k-1}(H)$ but $(I-K)^{k+1}(H)=(I-K)^{k}(H)$, then we obtain that $x_{0} \in(I-K)^{k-1}(H) \backslash(I-K)^{k}(H)$ gets mapped by $I-K$ to $(I-K) x_{0} \in$ $(I-K)^{k}(H)=(I-K)^{k+1}(H)=(I-K)\left((I-K)^{k}(H)\right)$ so that there has to exist $x_{1} \in(I-K)^{k}(H)$ satisfying $(I-K) x_{0}=(I-K) x_{1}$. Hence, $0 \neq x_{0}-x_{1} \in \operatorname{ker}(I-K)$ (since $x_{0} \neq x_{1}$ as $x_{0} \notin(I-K)^{k}(H)$ while $x_{1} \in(I-K)^{k}(H)$), which contradicts that $I-K$ is injective.

Knowing that - under the assumption that $\operatorname{ker}(I-K)=\{0\}$ and $\operatorname{im}(I-K) \neq H$ - it has to hold for every $k \in \mathbb{N}_{0}$ that $(I-K)^{k+1}(H) \subsetneq(I-K)^{k}(H)$ and since $(I-K)^{k}(H)$ is closed for every $k \in \mathbb{N}$ by part (b), we can now choose a sequence $\left(x_{k}\right)_{k \in \mathbb{N}} \subseteq H$ such that $\left\|x_{k}\right\|=1$ and $x_{k} \in(I-K)^{k}(H) \cap\left((I-K)^{k+1}(H)\right)^{\perp}$ for every $k \in \mathbb{N}$. Moreover, note that for all $k, l \in \mathbb{N}$ with $k<l$ it holds that

$$
x_{k}-\left(K x_{k}-K x_{l}\right)=\underbrace{\left(x_{k}-K x_{k}\right)}_{\in(I-K)^{k+1}(H)}-\underbrace{\left(x_{l}-K x_{l}\right)}_{\in(I-K)^{l+1}(H)}+\underbrace{x_{l}}_{\in(I-K)^{l}(H)} \in(I-K)^{k+1}(H),
$$

i.e., $\left\|K x_{k}-K x_{l}\right\| \geq \operatorname{dist}\left(x_{k},(I-K)^{k+1}(H)\right)=\left\|x_{k}\right\|=1$ (since, sloppily speaking, $K x_{k}-K x_{l}$ has to cover at least the part of x_{k} perpendicular to $\left.(I-K)^{k+1}(H)\right)$. In particular, $\left(K x_{k}\right)_{k \in \mathbb{N}}$ does not have a converging subsequence, although $\left(x_{k}\right)_{k \in \mathbb{N}} \subseteq H$ is a bounded sequence and K is compact.
$"(\Leftarrow) ": \operatorname{im}(I-K)=H$ implies that $\operatorname{ker}\left(I-K^{*}\right)=\{0\}$. By Schauder's theorem K^{*} is compact. The previous part of the proof hence implies that $\operatorname{im}\left(I-K^{*}\right)=H$. Hence, $\operatorname{ker}(I-K)=\{0\}$.
(e) Assume for a contradiction that $\operatorname{dim}(\operatorname{ker}(I-K))<\operatorname{dim}\left(\operatorname{ker}\left(I-K^{*}\right)\right)$. Since $\operatorname{ker}\left(I-K^{*}\right)=\operatorname{im}(I-K)^{\perp}$, we are assuming that $\operatorname{dim}(\operatorname{ker}(I-K))<\operatorname{dim}\left(\operatorname{im}(I-K)^{\perp}\right)$. Since $\operatorname{ker}(I-K)$ is finite-dimensional by part (a) and $\operatorname{dim}(\operatorname{ker}(I-K))<\operatorname{dim}(\operatorname{im}(I-$ $K)^{\perp}$), there exists an injective, but not surjective map $A_{0}: \operatorname{ker}(I-K) \rightarrow \operatorname{im}(I-K)^{\perp}$. Moreover, since $\operatorname{ker}(I-K)$ is finite-dimensional, A_{0} has finite rank and is therefore compact. Define $A: H \rightarrow \operatorname{im}(I-K)^{\perp}$ via $A(x+y)=A_{0} x$ for $x \in \operatorname{ker}(I-K)$, $y \in(\operatorname{ker}(I-K))^{\perp}$. Since A is a compact linear map, $K+A$ is also a linear map (from H to H). Note that $(I-K-A) x=0$ implies that $A x=(I-K) x \in$
$\operatorname{im}(I-K) \cap(\operatorname{im}(I-K))^{\perp}=\{0\}$, hence $x \in \operatorname{ker}(I-K) \cap \operatorname{ker}(A)=\operatorname{ker}\left(A_{0}\right)=\{0\}$. On the other hand, for every $x \in H$ it holds that $(I-K-A) x=(I-K) x-A x \in$ $\operatorname{im}(I-K) \oplus \operatorname{im}(A) \subsetneq \operatorname{im}(I-K) \oplus(\operatorname{im}(I-K))^{\perp}=H$ since $\operatorname{im}(A) \subsetneq(\operatorname{im}(I-K))^{\perp}$. Hence, we have $\operatorname{ker}(I-K-A)=\{0\}$ and $\operatorname{im}(I-K-A) \neq H$, contradicting part (d). This contradiction now shows $\operatorname{dim}(\operatorname{ker}(I-K)) \geq \operatorname{dim}\left(\operatorname{ker}\left(I-K^{*}\right)\right)$. Since K^{*} is, by Schauder's theorem, compact as well, we obtain by the above argument that $\operatorname{dim}\left(\operatorname{ker}\left(I-K^{*}\right)\right) \geq \operatorname{dim}(\operatorname{ker}(I-K))$.

Exercise 11.4 Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ and $\left(Z,\|\cdot\|_{Z}\right)$ be Banach spaces, let $A \in L(X, Y)$ and $B \in L(Y, Z)$ be Fredholm. Show that $B A \in L(X, Z)$ is Fredholm.

Solution. We use Exercise 10.3. Since A is Fredholm, and we find $A_{1}, A_{2} \in L(Y, X)$ and compact operators $K_{1} \in L(Y), K_{2} \in L(X)$ so that

$$
A A_{1}=I-K_{1}, \quad A_{2} A=I-K_{2} .
$$

Again, since B is Fredholm we find $B_{1}, B_{2} \in L(Z, Y)$ and compact operators $\tilde{K}_{1} \in L(Z)$, $\tilde{K}_{2} \in L(Y)$ so that

$$
B B_{1}=I-\tilde{K}_{1}, \quad B_{2} B=I-\tilde{K}_{2} .
$$

We notice that

$$
\begin{aligned}
& (B A)\left(A_{1} B_{1}\right)=B\left(A A_{1}\right) B_{1}=B\left(I-K_{1}\right) B_{1}=\left(B-B K_{1}\right) B_{1}=I-\left(\tilde{K}_{1}+B K_{1} B_{1}\right) \\
& \left(A_{2} B_{2}\right)(B A)=A_{2}\left(B_{2} B\right) A=A_{1}\left(I-\tilde{K}_{2}\right) A=I-\left(K_{2}+A_{1} \tilde{K}_{2} A\right) .
\end{aligned}
$$

Since both $\tilde{K}_{1}+B K_{1} B_{1}$ and $K_{2}+A_{1} \tilde{K}_{2} A$ are compact, by Exercise 10.3 the statement follows.

