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Exercise 11.1

(a) Let (X, ∥ · ∥X), (Y, ∥ · ∥Y ) and (Z, ∥ · ∥Z) be Banach spaces, let T ∈ L(X, Y ) be
compact and let J ∈ L(Y, Z) be injective. Prove that for every ε ∈ (0, +∞), there
exists C ∈ [0, +∞) such that

∥Tx∥Y ≤ ε∥x∥X + C∥JTx∥Z ∀ x ∈ X.

(b) Use part (a) to show: for all ε > 0 there exists C so that for all u ∈ H2(S1), we have

∥u∥H1(S1) ≤ ε∥u∥H2(S1) + C∥u∥L2(S1).

Solution.

(a) Assume by contradiction that the claim is not true. Then there exist ε ∈ (0, ∞) and
(xn)n∈N ⊆ X such that

∥Txn∥Y > ε ∥xn∥X + n ∥JTxn∥Z for all n ∈ N.

In particular, it holds for every n ∈ N that Txn ̸= 0 so that the sequence (x′
n)n∈N ⊆ X,

given by x′
n = xn

∥T xn∥Y
for all n ∈ N, is well-defined and satisfies

1 = ∥Tx′
n∥Y > ε ∥x′

n∥X + n ∥JTx′
n∥Z for all n ∈ N.

This implies that, on the one hand, (x′
n)n∈N ⊆ X is bounded and, on the other

hand, that JTx′
n → 0 in Z as n → ∞. The boundedness of (x′

n)n∈N ⊆ X and
the assumption that T is compact imply that there exists a subsequence

(
x′

nk

)
k∈N

such that
(
Tx′

nk

)
k∈N

⊆ Y converges to some limit y ∈ Y as k → ∞. The fact that
∥Tx′

n∥Y = 1 for every n ∈ N implies that ∥y∥Y = 1. The assumed continuity of
J , on the other hand, implies that JTx′

nk
→ Jy in Z as k → ∞. Since JTx′

n → 0
as n → ∞, we conclude that Jy = 0. By injectivity of J , we obtain y = 0. This,
however, contradicts ∥y∥Y = 1, which we had already deduced above.

(b) It has been proven in class that the inclusion I : H2(S1) → H1(S1) is compact.
Moreover, it is straightforward to see that the inclusion J : H1(S1) → L2(S1) is
injective. By part (a), the statement follows.

Exercise 11.2 Let H be a separable Hilbert space, and let K ∈ L(H) be a compact
self-adjoint operator (i.e. K = K∗). The goal of this exercise is to show that K has an
eigenvector.
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(a) Show that there exists a vector v0 ∈ H, ∥v0∥ = 1, so that ∥Kv0∥ = ∥K∥L(H).

(b) If w ∈ H, w ⊥ v0, show that the derivative of (−1, 1) ∋ t 7→ ∥K(v0 + tw)∥2 at t = 0
is equal to 0. Conclude that K2 has an eigenvector with eigenvalue λ = ∥K∥2

L(H).

(c) Deduce from (b) that K has an eigenvector with eigenvalue λ0 ∈ {∥K∥L(H), −∥K∥L(H)}.

Solution.

(a) Recall that

∥K∥L(H) = sup
∥x∥H=1

∥Kx∥H .

Let (xk)k∈N be such that ∥xk∥H = 1 and ∥Kxk∥H → ∥K∥L(H). Since H is reflexive
we have that the unit ball in H is weakly sequentially compact. In particular, there
exists a subsequence of (xk)k∈N (not relabeled) such that xk

w−⇀ x in H. Since K is
compact on a reflexive space, by Exercise we have that Kxk → Kx strongly in H
as k → +∞. Hence ∥Kx∥H = ∥K∥L(H). Moreover, since the norm is weakly lower
semicontinuous we have ∥x∥H ≤ 1. We set

v0 := x

∥x∥H

and we notice that ∥v0∥H = 1. Moreover,

∥Kv0∥H = ∥Kx∥H

∥x∥H

≥ ∥K∥L(H).

By definition of ∥K∥L(H), this implies ∥Kv0∥H = ∥K∥L(H).

(b) By point (a) we have

∥K(v0 + tw)∥2
H

∥v0 + tw∥2
H

≤ ∥K∥2
L(H) = ∥Kv0∥2

H , ∀ t ∈ (−1, 1).

Hence, the function

(−1, 1) ∋ t 7→ ∥K(v0 + tw)∥2
H

∥v0 + tw∥2
H

has a global maximum at t = 0. Hence, we have

d

dt

∣∣∣∣∣
t=0

∥K(v0 + tw)∥2
H

∥v0 + tw∥2
H

= 0.
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Since w ⊥ v0, we have ∥v0 + tw∥2
H = 1 + t2∥w∥2

H , for every t ∈ (−1, 1). Thus,

0 = d

dt

∣∣∣∣∣
t=0

∥K(v0 + tw)∥2
H

∥v0 + tw∥2
H

= d

dt

∣∣∣∣∣
t=0

∥K(v0 + tw)∥2
H = (Kv0, Kw) = (K2v0, w).

By arbitrariness of w ∈ v⊥
0 we conclude that K2v0 = αv0, for some α ∈ R. By scalar

product with v0 in the previous equality we get

α = α(v0, v0)H = (K2v0, v0)H = (Kv0, Kv0)H = ∥Kv0∥2
H = ∥K∥2

L(H).

The statement of point (b) follows.

(c) Let λ := ∥K∥2
L(H) ≥ 0.

0 = (K2 − λI)v0 = (K −
√

λI)(K +
√

λI)v0

Now if w := (K +
√

λI)v0 ̸= 0, then w is an eigenvector of K with eigenvalue√
λ = ∥K∥L(H). If instead (K +

√
λI)v0 = 0, then v0 is an eigenvector of K with

eigenvalue −
√

λ = −∥K∥L(H). The statement follows.

Exercise 11.3 Let H be a Hilbert space and let K ∈ L(H) be a compact operator.
Prove the following statements. The goal of this exercise is to give a direct, hands-on
proof (i.e. without using the general theory of Fredholm operators) that the index of
I − K is 0 when K is a compact operator on a Hilbert space.

(a) dim(ker(I − K)) < ∞.

(b) im(I − K) is closed.

(c) im(I − K) = (ker (I − K∗))⊥.

(d) ker(I − K) = {0} if and only if im(I − K) = H.

Hint: For “(⇒)”, assume that ker(I − K) = {0} and im(I − K) ̸= H. Show that this
assumption leads to the following chain of proper inclusions: H ⊋ (I − K)(H) ⊋
(I − K)2(H) ⊋ (I − K)3(H) ⊋ . . . choose now (xk)k∈N ⊆ H such that ∥xk∥ = 1,
xk ∈ (I − K)k(H), xk ∈

(
(I − K)k+1(H)

)⊥
and show that Kxk − Kxl has norm

greater or equal than 1 whenever k < l because Kxk − Kxl can be written as the
difference of xk and an element of (I − K)k+1(H). For " (⇐), dualize.
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(e) dim(ker(I − K)) = dim (ker (I − K∗)).

Hint: Assume by contradiction that dim(ker(I−K)) < dim
(
im(I − K)⊥

)
. Construct

an injective compact map A0 : ker(I − K) → im(I − K)⊥. Show that this map is not
surjective. Extend A0 to a compact map A : H → im(I − K)⊥ with im(A) = im (A0)
by setting A|(ker(I−K))⊥ ≡ 0. Show that ker(I−K−A) = {0}, but im(I−K−A) ̸= H.
This contradiction now shows dim(ker(I − K)) ≥ dim

(
im(I − K)⊥

)
. Finish by

dualizing.

Solution.

(a) Assume that dim(ker(I−K)) = ∞. Then there exists a sequence (xn)n∈N ⊆ ker(I−K)
with (xn, xm) = δnm for all n, m ∈ N. In particular, (xn)n∈N does not have a
converging subsequence. By compactness of K and by xn = Kxn for every n ∈ N,
the sequence (xn)n∈N should have a converging subsequence, though.

Alternatively, restricting K to the closed (and therefore complete) subspace ker(I−K),
we are in the situation of a Hilbert/Banach space on which the identity operator is a
compact operator or, put differently, in which the closed unit ball is compact. This
only ever happens in finite dimensions.

(b) We claim that there exists γ ∈ (0, ∞) so that ∥x∥ ≤ γ∥x − Kx∥ for all x ∈ (ker(I −
K))⊥. Indeed, if this was not the case, then there would exist a sequence (xn)n∈N ⊆
(ker(I − K))⊥ satisfying 1 = ∥xn∥ > n ∥xn − Kxn∥ for all n ∈ N. This would imply
that xn − Kxn → 0 as n → ∞. On the other hand, by compactness of K, we may
assume (by passing to a subsequence, if necessary) that Kxn → y as n → ∞ for some
y ∈ H. Consequentially, we would have that xn = (xn − Kxn) + Kxn → 0 + y = y
as n → ∞. Hence, we would obtain y ∈ (ker(I − K))⊥, ∥y∥ = limn→∞ ∥xn∥ = 1, and
Ky = limn→∞ Kxn = y. But this is not possible as y ∈ (ker(I − K))⊥ and Ky = y
(i.e., y ∈ ker(I − K)) would imply that y = 0, contradicting ∥y∥ = 1.

With γ ∈ (0, ∞) so that ∥x∥ ≤ γ∥x − Kx∥ for all x ∈ (ker(I − K))⊥, we can
now conclude that im(I − K) is closed: Let (yn)n∈N ⊆ im(I − K) be an arbitrary
sequence converging to y∞ in H. Let (xn)n∈N ⊆ H satisfy for all n ∈ N that
yn = xn − Kxn. Denoting by P ∈ L(H) the orthogonal projection onto the closed
subspace (ker(I − K))⊥, we obtain that (Pxn)n∈N ⊆ (ker(I − K))⊥ (and therefore
xn − Pxn ∈ ker(I − K)) so that Pxn − KPxn = xn − Kxn = yn for every n ∈ N.
Now, we can use the previously obtained inequality to verify that (Pxn)n∈N ⊆ H is
a Cauchy sequence:

lim sup
N→∞

sup
m,n≥N

∥Pxn − Pxm∥ ≤ lim sup
N→∞

sup
m,n≥N

γ ∥yn − ym∥ = 0.
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Thus, there exists a limit x∞ ∈ H of (Pxn)n∈N and x∞−Kx∞ = limn→∞(I−K)Pxn =
limn→∞ yn = y∞, i.e., y∞ ∈ im(I − K).

(c) This follows immediately from the fact that im(I − K) = (ker (I − K∗))⊥ and the
fact that im(I − K) is closed (cp. part (b)).

(d) “(⇒)”: Assume by contradiction that ker(I − K) = {0} and im(I − K) ̸= H. We
first show by induction that (I − K)k+1(H) ⊊ (I − K)k(H) for every k ∈ N0.
Indeed, for k = 0, this is just the previous assumption. And if k ∈ N is such that
(I − K)k(H) ⊊ (I − K)k−1(H) but (I − K)k+1(H) = (I − K)k(H), then we obtain
that x0 ∈ (I − K)k−1(H)\(I − K)k(H) gets mapped by I − K to (I − K)x0 ∈
(I − K)k(H) = (I − K)k+1(H) = (I − K)

(
(I − K)k(H)

)
so that there has to exist

x1 ∈ (I −K)k(H) satisfying (I −K)x0 = (I −K)x1. Hence, 0 ̸= x0 −x1 ∈ ker(I −K)
(since x0 ̸= x1 as x0 /∈ (I − K)k(H) while x1 ∈ (I − K)k(H) ), which contradicts
that I − K is injective.

Knowing that - under the assumption that ker(I − K) = {0} and im(I − K) ̸= H
- it has to hold for every k ∈ N0 that (I − K)k+1(H) ⊊ (I − K)k(H) and since
(I − K)k(H) is closed for every k ∈ N by part (b), we can now choose a sequence
(xk)k∈N ⊆ H such that ∥xk∥ = 1 and xk ∈ (I − K)k(H) ∩

(
(I − K)k+1(H)

)⊥
for

every k ∈ N. Moreover, note that for all k, l ∈ N with k < l it holds that

xk − (Kxk − Kxl) = (xk − Kxk)︸ ︷︷ ︸
∈(I−K)k+1(H)

− (xl − Kxl)︸ ︷︷ ︸
∈(I−K)l+1(H)

+ xl︸︷︷︸
∈(I−K)l(H)

∈ (I − K)k+1(H),

i.e., ∥Kxk − Kxl∥ ≥ dist
(
xk, (I − K)k+1(H)

)
= ∥xk∥ = 1 (since, sloppily speaking,

Kxk − Kxl has to cover at least the part of xk perpendicular to (I − K)k+1(H)
)
. In

particular, (Kxk)k∈N does not have a converging subsequence, although (xk)k∈N ⊆ H
is a bounded sequence and K is compact.

“(⇐)”: im(I − K) = H implies that ker (I − K∗) = {0}. By Schauder’s theorem
K∗ is compact. The previous part of the proof hence implies that im (I − K∗) = H.
Hence, ker(I − K) = {0}.

(e) Assume for a contradiction that dim(ker(I − K)) < dim (ker (I − K∗)). Since
ker (I − K∗) = im(I−K)⊥, we are assuming that dim(ker(I−K)) < dim

(
im(I − K)⊥

)
.

Since ker(I − K) is finite-dimensional by part (a) and dim(ker(I − K)) < dim(im(I−
K)⊥ ), there exists an injective, but not surjective map A0 : ker(I −K) → im(I −K)⊥.
Moreover, since ker(I − K) is finite-dimensional, A0 has finite rank and is therefore
compact. Define A : H → im(I − K)⊥ via A(x + y) = A0x for x ∈ ker(I − K),
y ∈ (ker(I − K))⊥. Since A is a compact linear map, K + A is also a linear map
(from H to H). Note that (I − K − A)x = 0 implies that Ax = (I − K)x ∈
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im(I − K) ∩ (im(I − K))⊥ = {0}, hence x ∈ ker(I − K) ∩ ker(A) = ker (A0) = {0}.
On the other hand, for every x ∈ H it holds that (I − K − A)x = (I − K)x − Ax ∈
im(I − K) ⊕ im(A) ⊊ im(I − K) ⊕ (im(I − K))⊥ = H since im(A) ⊊ (im(I − K))⊥.
Hence, we have ker(I − K − A) = {0} and im(I − K − A) ̸= H, contradicting part
(d). This contradiction now shows dim(ker(I − K)) ≥ dim (ker (I − K∗)). Since K∗

is, by Schauder’s theorem, compact as well, we obtain by the above argument that
dim (ker (I − K∗)) ≥ dim(ker(I − K)).

Exercise 11.4 Let (X, ∥ · ∥X), (Y, ∥ · ∥Y ) and (Z, ∥ · ∥Z) be Banach spaces, let
A ∈ L(X, Y ) and B ∈ L(Y, Z) be Fredholm. Show that BA ∈ L(X, Z) is Fredholm.

Solution. We use Exercise 10.3. Since A is Fredholm, and we find A1, A2 ∈ L(Y, X)
and compact operators K1 ∈ L(Y ), K2 ∈ L(X) so that

AA1 = I − K1, A2A = I − K2.

Again, since B is Fredholm we find B1, B2 ∈ L(Z, Y ) and compact operators K̃1 ∈ L(Z),
K̃2 ∈ L(Y ) so that

BB1 = I − K̃1, B2B = I − K̃2.

We notice that

(BA)(A1B1) = B(AA1)B1 = B(I − K1)B1 = (B − BK1)B1 = I − (K̃1 + BK1B1)
(A2B2)(BA) = A2(B2B)A = A1(I − K̃2)A = I − (K2 + A1K̃2A).

Since both K̃1 + BK1B1 and K2 + A1K̃2A are compact, by Exercise 10.3 the statement
follows.
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