Exercise 12.1 Let $H \subset L^{2}\left(\mathbb{S}^{1}\right)$ be given by $H=\operatorname{ran} P$, where $P: L^{2}\left(\mathbb{S}^{1}\right) \rightarrow L^{2}\left(\mathbb{S}^{1}\right)$ is the projection operator given by

$$
(P f)(\theta):=\sum_{n=0}^{+\infty} \hat{f}(n) e^{i n \theta}, \quad \forall \theta \in[0,2 \pi] .
$$

Given any $\varphi \in C^{0}\left(\mathbb{S}^{1}\right)$, we define the Toeplitz operator $T_{\varphi}: H \rightarrow H$ by $T_{\varphi}(u):=P(\varphi u)$, for every $u \in H$.
(a) Clearly, $\left\|T_{\varphi}\right\|_{L(H)} \leq\|\varphi\|_{L^{\infty}}$. By explicit computation, for $\varphi(\theta)=E_{k}(\theta)=e^{i k \theta}$ $(k \in \mathbb{N})$ show that $T_{E_{k}} T_{E_{l}}-T_{E_{k} E_{l}}$ is a compact operator on H for every $k, l \in \mathbb{Z}$.
(b) For every $\varphi, \psi \in C^{0}\left(\mathbb{S}^{1}\right)$, show that $T_{\varphi} T_{\psi}-T_{\varphi \psi}$ is a compact operator on H.

Hint. Approximate φ and ψ with linear combinations of exponentials.
(c) Prove that if $\varphi \in C^{0}\left(\mathbb{S}^{1}\right)$ is nowhere vanishing then T_{φ} is a Fredholm operator.

Hint. Show that a Fredholm inverse is given by T_{ψ}, with $\psi(\theta)=(\varphi(\theta))^{-1}$ for every $\theta \in[0,2 \pi]$.
(d) Bonus problem. A nowhere vanishing $\varphi \in C^{0}\left(\mathbb{S}^{1}\right)$ is said to have degree $k \in \mathbb{Z}$ if φ is homotopic to E_{k} through continuous maps of \mathbb{S}^{1} to $\mathbb{C} \backslash\{0\}$. Show that this implies

$$
\operatorname{index}\left(T_{\varphi}\right)=\operatorname{index}\left(T_{E_{k}}\right) .
$$

Compute this index by explicitly describing $\operatorname{ker}\left(T_{E_{k}}\right)$ and $\operatorname{ker}\left(T_{E_{k}}^{*}\right)$.

Solution.

(a) By direct computation we get

$$
\left.\begin{array}{rl}
\left(\left(T_{E_{k}} T_{E_{l}}\right)(u)\right)(\theta) & =\sum_{n=k}^{+\infty} \hat{u}(n-(k+l)) e^{i n \theta}, \\
\left(\left(T_{E_{k} E_{l}}\right)(u)\right)(\theta) & =\sum_{n=0}^{+\infty} \hat{u}(n-(k+l)) e^{i n \theta},
\end{array} \quad \forall \theta \in[0,2 \pi], 2 \pi\right] .
$$

Hence

$$
\left(\left(T_{E_{k}} T_{E_{l}}-T_{E_{k} E_{l}}\right)(u)\right)(\theta)= \begin{cases}-\sum_{n=0}^{k-1} \hat{u}(n-(k+l)) e^{i n \theta} & \text { if } k>0 \\ 0 & \text { if } k \leq 0\end{cases}
$$

Thus, $T_{E_{k}} T_{E_{l}}-T_{E_{k} E_{l}}$ is compact because it has finite rank.
(b) By density, we can find $\left\{\varphi_{j}\right\}_{j \in \mathbb{N}}$ and $\left\{\psi_{j}\right\}_{j \in \mathbb{N}}$ of the form

$$
\begin{aligned}
& \varphi_{j}(\theta)=\sum_{k=1}^{N_{1, j}} a_{k} e^{i n_{k} \theta}, \quad \forall \theta \in[0,2 \pi], \\
& \psi_{j}(\theta)=\sum_{k=1}^{N_{2, j}} b_{k} e^{i m_{k} \theta}, \quad \forall \theta \in[0,2 \pi],
\end{aligned}
$$

and such that $\varphi_{j} \rightarrow \varphi, \psi_{j} \rightarrow \psi$ uniformly on $[0,2 \pi]$ as $j \rightarrow+\infty$. Notice that

$$
\begin{aligned}
T_{\varphi_{j}} T_{\psi_{j}} & =\sum_{k=1}^{N_{1, j}} \sum_{h=1}^{N_{2, j}} a_{k} b_{h} T_{E_{n_{k}}} T_{E_{m_{h}}}, \\
T_{\varphi_{j} \psi_{j}} & =\sum_{k=1}^{N_{1, j}} \sum_{h=1}^{N_{2, j}} a_{k} b_{h} T_{E_{n_{k}} E_{m_{h}}},
\end{aligned}
$$

for every $j \in \mathbb{N}$. Hence, by point (a) we have that

$$
T_{\varphi_{j}} T_{\psi_{j}}-T_{\varphi_{j} \psi_{j}}=\sum_{k=1}^{N_{1, j}} \sum_{h=1}^{N_{2, j}} a_{k} b_{h}\left(T_{E_{n_{k}}} T_{E_{m_{h}}}-T_{E_{n_{k}} E_{m_{h}}}\right)
$$

is compact for every $i \in \mathbb{N}$ because it is a finite linear combination of compact operators. Moreover,

$$
\begin{aligned}
\left\|\left(T_{\varphi_{j}} T_{\psi_{j}}-T_{\varphi_{j} \psi_{j}}\right)-\left(T_{\varphi} T_{\psi}-T_{\varphi \psi}\right)\right\|_{L(H)} \leq & \left\|\left(T_{\varphi_{j}}-T_{\varphi}\right) T_{\psi_{j}}\right\|_{L(H)}+\left\|T_{\varphi}\left(T_{\psi_{j}}-T_{\psi}\right)\right\|_{L(H)} \\
& +\left\|T_{\varphi_{j} \psi_{j}}-T_{\varphi \psi}\right\|_{L(H)} \\
= & \left\|\left(T_{\varphi_{j}-\varphi}\right) T_{\psi_{i}}\right\|_{L(H)}+\left\|T_{\varphi}\left(T_{\psi_{j}-\psi}\right)\right\|_{L(H)} \\
& +\left\|T_{\varphi_{j} \psi_{j}-\varphi \psi}\right\|_{L(H)} \\
\leq & \left\|\varphi_{j}-\varphi\right\|_{L^{\infty}}\left\|\psi_{j}\right\|_{L^{\infty}}+\|\varphi\|_{L^{\infty}}\left\|\psi_{j}-\psi\right\|_{L^{\infty}} \\
& +\left\|\varphi_{j} \psi_{j}-\varphi \psi\right\|_{L^{\infty}} \rightarrow 0 \quad(j \rightarrow+\infty) .
\end{aligned}
$$

Thus, $T_{\varphi} T_{\psi}-T_{\varphi \psi}$ is compact because it is the limit of sequence of compact operators.
(c) By point (b), we have that

$$
\begin{array}{r}
T_{\varphi} T_{\psi}-\mathrm{Id}_{H}=T_{\varphi} T_{\psi}-T_{\varphi \psi}=: K_{1}, \\
T_{\psi} T_{\varphi}-\operatorname{Id}_{H}=T_{\psi} T_{\varphi}-T_{\psi \varphi}=: K_{2}
\end{array}
$$

are compact operators on H. Hence, by Exercise 10.3, We have that T_{φ} is compact because it is invertible modulo compact operators.
(d) By hypothesis, there exists a continuous homotopy $H: \mathbb{S}^{1} \times[0,1] \rightarrow \mathbb{C} \backslash\{0\}$ such that such that $H(0, \theta)=\varphi(\theta)$ and $H(1, \theta)=E_{k}(\theta)$, for every $\theta \in[0,2 \pi]$. Consider the path $\gamma:[0,1] \rightarrow \operatorname{Fred}(H)$ given by $\gamma_{t}:=T_{H(t,) \cdot}$. Since

$$
C^{0}\left(\mathbb{S}^{1}, \mathbb{C} \backslash\{0\}\right) \ni \varphi \mapsto T_{\varphi} \in \operatorname{Fred}(H)
$$

is a continuous linear map (see (a) e.g.) and

$$
[0,1] \ni t \mapsto H(t, \cdot) \in C^{0}\left(\mathbb{S}^{1}, \mathbb{C} \backslash\{0\}\right)
$$

is continuous by definition of homotopy, then we conclude that γ is a continuous path joining T_{φ} and $T_{E_{k}}$ in $\operatorname{Fred}(H)$. As the Fredholm index is constant on the connected components of $\operatorname{Fred}(H)$ (see the lecture notes on polybox), we get that

$$
\operatorname{index}\left(T_{\varphi}\right)=\operatorname{index}\left(T_{E_{k}}\right) .
$$

Now we want to compute index $\left(T_{E_{k}}\right)$ explicitly. In order to do this, we see that

$$
0 \equiv\left(\left(T_{E_{k}}\right)(u)\right)(\theta)=\sum_{n=0}^{+\infty} \hat{u}(n-k) e^{i n \theta}
$$

if and only if $\hat{u}(n)=0$ for every $n \in \mathbb{N}$ such that $n \geq-k$. Thus, since $u \in H$, we get

$$
\operatorname{dim} \operatorname{ker}\left(T_{E_{k}}\right)= \begin{cases}-k & \text { if } k<0 \\ 0 & \text { if } k \geq 0\end{cases}
$$

Notice that $T_{E_{k}}^{*}=T_{E_{-k}}$, for every $k \in \mathbb{Z}$. Hence,

$$
\operatorname{dim} \operatorname{ker}\left(T_{E_{k}}^{*}\right)=\operatorname{dim} \operatorname{ker}\left(T_{E_{-k}}\right)= \begin{cases}k & \text { if } k>0 \\ 0 & \text { if } k \leq 0\end{cases}
$$

In particular, we obtain that

$$
\operatorname{index}\left(T_{E_{k}}\right)=\operatorname{dim} \operatorname{ker}\left(T_{E_{k}}\right)-\operatorname{dim} \operatorname{ker}\left(T_{E_{k}}^{*}\right)=-k, \quad \forall k \in \mathbb{Z} .
$$

Exercise 12.2 Let X be a complex Banach space, and let $\Omega \subset \mathbb{C}$ be a non-empty open subset.
(a) Prove that a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset X$ is a Cauchy sequence if and only if $\left\{\lambda\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence uniformly for $\lambda \in X^{*}$ with $\|\lambda\| \leq 1$. That is, for all $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ so that for all $n \geq n_{0}$, we have $\left|\lambda\left(x_{n}\right)-\lambda\left(x_{m}\right)\right|<\varepsilon$ for $n, m \geq n_{0}$ and for all $\lambda \in X^{*},\|\lambda\| \leq 1$.
(b) Suppose $f: \Omega \rightarrow X$ is weakly holomorphic, meaning that for all $\lambda \in X^{*}$ the complexvalued function $\lambda \circ f: \Omega \rightarrow \mathbb{C}$ is holomorphic. Prove that f is holomorphic.

Hint. Let $z_{0} \in \Omega$. Write $\lambda\left(f\left(z_{0}\right)\right)$ as an integral of $\lambda(f(z)) /\left(z-z_{0}\right)$ over a small circle γ around z_{0}, and use this to show that

$$
\begin{aligned}
\lambda\left(\frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}\right) & -\left.\frac{d}{d z}\right|_{z=z_{0}}(\lambda \circ f) \\
& =\frac{1}{2 \pi i} \int_{\gamma}\left[\frac{1}{h}\left(\frac{1}{z-\left(z_{0}+h\right)}-\frac{1}{z-z_{0}}\right)-\frac{1}{\left(z-z_{0}\right)^{2}}\right] \lambda(f(z)) d z .
\end{aligned}
$$

Using Banach-Steinhaus, show that $f(z)$ is uniformly bounded for $z \in \gamma$, and use this and simple estimates for the above integral to show that $\lambda\left(\left(f\left(z_{0}+h\right)-f\left(z_{0}\right)\right) / h\right)$ is uniformly Cauchy for $\lambda \in X^{*},\|\lambda\| \leq 1$.
(c) By using part (b) and similar arguments, prove the following result. Suppose $f: \Omega \rightarrow L(X)$ is weakly holomorphic in the sense that for all $x \in X$ and $\lambda \in X^{*}$ the function $\Omega \ni z \mapsto \lambda(f(z) x) \in \mathbb{C}$ is holomorphic. Show that $\Omega \ni z \mapsto f(z) \in L(X)$ is holomorphic.

Solution.

(a) First we show that if $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset X$ is a Cauchy sequence then $\left\{\lambda\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence uniformly for $\lambda \in X^{*}$ with $\|\lambda\| \leq 1$. Indeed, since $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset X$ is Cauchy, for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $\left\|x_{n}-x_{m}\right\|_{X}<\varepsilon$ for every $n, m \in \mathbb{N}$ with $n, m \geq n_{0}$. Then, for every $\lambda \in X^{*}$ such that $\|\lambda\| \leq 1$ and every $n, m \geq n_{0}$ we have

$$
\left|\lambda\left(x_{n}\right)-\lambda\left(x_{m}\right)\right|=\left|\lambda\left(x_{n}-x_{m}\right)\right| \leq\|\lambda\|\left\|x_{n}-x_{m}\right\|_{X} \leq\left\|x_{n}-x_{m}\right\|_{X}<\varepsilon .
$$

Now assume that $\left\{\lambda\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence uniformly for $\lambda \in X^{*}$ with $\|\lambda\| \leq 1$. Then, for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that

$$
\sup _{\substack{x \in X^{*} \\\|\lambda\| \leq 1}}\left|\lambda\left(x_{n}\right)-\lambda\left(x_{m}\right)\right|<\varepsilon
$$

for every $n, m \in \mathbb{N}$ with $n, m \geq n_{0}$. Thus,

$$
\left\|x_{n}-x_{m}\right\|_{X}=\sup _{\substack{\lambda \in X^{*} \\\|\lambda\| \leq 1}}\left|\lambda\left(x_{n}-x_{m}\right)\right|=\sup _{\substack{\lambda \in X^{*} \\\|\lambda\| \leq 1}}\left|\lambda\left(x_{n}\right)-\lambda\left(x_{m}\right)\right|<\varepsilon,
$$

for every $n, m \in \mathbb{N}$ with $n, m \geq n_{0}$. The statement follows.
(b) Fix any $z_{0} \in \Omega$ and let γ be a circle of radius r centered at z_{0} such that $\gamma \subset \Omega$. Let $\lambda \in X^{*}$. Notice that, since $\lambda \circ f: \Omega \rightarrow \mathbb{C}$ is holomorphic, by the Cauchy integral formula we have

$$
\lambda\left(f\left(z_{0}\right)\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{\lambda(f(z))}{\left(z-z_{0}\right)} d z
$$

Prof. P. Hintz
Assistant: R. Caniato

Functional Analysis I
Exercise Sheet 12

$$
\left.\frac{d}{d z}\right|_{z=z_{0}}(\lambda \circ f)=\frac{1}{2 \pi i} \int_{\gamma} \frac{\lambda(f(z))}{\left(z-z_{0}\right)^{2}} d z
$$

and

$$
\lambda\left(f\left(z_{0}+h\right)\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{\lambda(f(z))}{\left(z-\left(z_{0}+h\right)\right)} d z
$$

for every $h \in \Omega$ with $|h| \leq \frac{r}{2}$. By linearity of gamma, we get

$$
\begin{align*}
& \frac{\lambda\left(f\left(z_{0}+h\right)\right)-\lambda\left(f\left(z_{0}\right)\right)}{h}-\left.\frac{d}{d z}\right|_{z=z_{0}}(\lambda \circ f) \\
& =\frac{1}{2 \pi i} \int_{\gamma}\left[\frac{1}{h}\left(\frac{1}{z-\left(z_{0}+h\right)}-\frac{1}{z-z_{0}}\right)-\frac{1}{\left(z-z_{0}\right)^{2}}\right] \lambda(f(z)) d z \\
& =\frac{1}{2 \pi i} \int_{\gamma}\left(\frac{h}{\left(z-\left(z_{0}+h\right)\right)\left(z-z_{0}\right)^{2}}\right) \lambda(f(z)) d z \tag{1}
\end{align*}
$$

Let $J_{X}: X \rightarrow X^{* *}$ be the standard linear isometry mapping $x \in X$ into the linear functional on X^{*} given by $\left(J_{X}(x)\right)(\lambda)=\lambda(x)$, for every $x \in X$ and $\lambda \in X^{*}$. Consider the family of linear functionals $\left\{J_{X}(f(z))\right\}_{z \in \gamma}$. Fix any $\lambda \in X^{*}$. Since $\lambda \circ f$ is holomorphic and hence continuous on the compact set γ, for every $\lambda \in X^{*}$ there exists C_{λ} such that $\left|\left(J_{X}(f(z))\right)(\lambda)\right|=|\lambda(f(z))| \leq C_{\lambda}$ for every $z \in \gamma$. This means that the family $\left\{J_{X}(f(z))\right\}_{z \in \gamma} \subset X^{* *}$ is pointwise bounded on $X^{* *}$. By the Banach-Steinhaus theorem, we have that $\left\{J_{X}(f(z))\right\}_{z \in \gamma}$ is uniformly bounded in $X^{* *}$, i.e. there exists $C>0$ such that

$$
\|f(z)\|_{X}=\left\|J_{X}(f(z))\right\|_{X^{* *}} \leq C \quad \forall z \in \gamma,
$$

where the first equality comes from the fact that J_{X} is an isometry. This immediately implies that for every $\lambda \in X^{*}$ with $\|\lambda\| \leq 1$ we have

$$
|\lambda(f(z))| \leq\|f(z)\|_{X} \leq C \quad \forall z \in \gamma .
$$

Hence, by (1), for every $h_{1}, h_{2} \in \mathbb{C}$ with $\left|h_{1}\right|,\left|h_{2}\right| \leq \frac{r}{2}$ we get

$$
\left|\frac{\lambda\left(f\left(z_{0}+h_{1}\right)\right)-\lambda\left(f\left(z_{0}\right)\right)}{h_{1}}-\frac{\lambda\left(f\left(z_{0}+h_{2}\right)\right)-\lambda\left(f\left(z_{0}\right)\right)}{h_{2}}\right| \leq \frac{C}{\pi} \int_{\gamma} \frac{2}{r^{3}} d z=\frac{4 C}{r^{2}}\left|h_{1}-h_{2}\right| .
$$

In particular, we have that

$$
\left\{\frac{\lambda\left(f\left(z_{0}+h\right)\right)-\lambda\left(f\left(z_{0}\right)\right)}{h}\right\}_{0<h \leq \frac{r}{2}}
$$

is uniformly Cauchy for $\lambda \in X^{*}$ with $\|\lambda\| \leq 1$. By point (a), this implies that

$$
\left\{\frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}\right\}_{0<h \leq \frac{r}{2}}
$$

is Cauchy in X. This amounts to saying that f is differentiable at z_{0}. The statement follows.
(c) Fix any $z_{0} \in \Omega$ and let γ be a circle of radius r centered at z_{0} such that $\gamma \subset \Omega$. Let $\lambda \in X^{*}$ and $x \in X$. Notice that, since $\lambda \circ(f(\cdot) x): \Omega \rightarrow \mathbb{C}$ is holomorphic, by the Cauchy integral formula we have

$$
\begin{gathered}
\lambda\left(f\left(z_{0}\right) x\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{\lambda(f(z) x)}{\left(z-z_{0}\right)} d z, \\
\left.\frac{d}{d z}\right|_{z=z_{0}}(\lambda \circ(f(\cdot) x))=\frac{1}{2 \pi i} \int_{\gamma} \frac{\lambda(f(z) x)}{\left(z-z_{0}\right)^{2}} d z,
\end{gathered}
$$

and

$$
\lambda\left(f\left(z_{0}+h\right) x\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{\lambda(f(z) x)}{\left(z-\left(z_{0}+h\right)\right)} d z
$$

for every $h \in \Omega$ with $|h| \leq \frac{r}{2}$. By linearity of gamma, we get

$$
\begin{align*}
& \frac{\lambda\left(f\left(z_{0}+h\right) x\right)-\lambda\left(f\left(z_{0}\right) x\right)}{h}-\left.\frac{d}{d z}\right|_{z=z_{0}}(\lambda \circ(f(\cdot) x)) \\
& =\frac{1}{2 \pi i} \int_{\gamma}\left[\frac{1}{h}\left(\frac{1}{z-\left(z_{0}+h\right)}-\frac{1}{z-z_{0}}\right)-\frac{1}{\left(z-z_{0}\right)^{2}}\right] \lambda(f(z) x) d z \\
& =\frac{1}{2 \pi i} \int_{\gamma}\left(\frac{h}{\left(z-\left(z_{0}+h\right)\right)\left(z-z_{0}\right)^{2}}\right) \lambda(f(z) x) d z \tag{2}
\end{align*}
$$

By part (b), we know that for every $x \in X$ the function $\Omega \ni z \mapsto f(z) x \in X$ is holomorphic. This implies that the family of linear operators $\{f(z)\}_{z \in \gamma}$ is pointwise bounded. By the Banach-Steinhaus theorem, we conclude that $\{f(z)\}_{z \in \gamma}$ is uniformly bounded, i.e. that there exists a constant $C>0$ such that

$$
\|f(x)\|_{L(X)} \leq C
$$

This implies that for every $\lambda \in X^{*}$ and $x \in X$ such that $\|\lambda\|_{X^{*}} \leq 1$ and $\|x\|_{X} \leq 1$ we have

$$
|\lambda(f(z) x)| \leq\|\lambda\|_{X^{*}}\|f(z)\|_{L(X)}\|x\|_{X} \leq C \quad \forall z \in \gamma
$$

Prof. P. Hintz
Assistant: R. Caniato

Hence, by (2), for every $h_{1}, h_{2} \in \mathbb{C}$ with $\left|h_{1}\right|,\left|h_{2}\right| \leq \frac{r}{2}$ we get

$$
\begin{aligned}
\left|\frac{\lambda\left(f\left(z_{0}+h_{1}\right) x\right)-\lambda\left(f\left(z_{0}\right) x\right)}{h_{1}}-\frac{\lambda\left(f\left(z_{0}+h_{2}\right) x\right)-\lambda\left(f\left(z_{0}\right) x\right)}{h_{2}}\right| & \leq \frac{C}{\pi} \int_{\gamma} \frac{2}{r^{3}} d z \\
& =\frac{4 C}{r^{2}}\left|h_{1}-h_{2}\right|
\end{aligned}
$$

In particular, we have that

$$
\left\{\frac{\lambda\left(f\left(z_{0}+h\right) x\right)-\lambda\left(f\left(z_{0}\right) x\right)}{h}\right\}_{0<h \leq \frac{r}{2}}=\left\{\frac{\lambda\left(\left(f\left(z_{0}+h\right)-f\left(z_{0}\right)\right) x\right)}{h}\right\}_{0<h \leq \frac{r}{2}}
$$

is uniformly Cauchy for $\lambda \in X^{*}$ and $x \in X$ with $\|\lambda\|_{X^{*}} \leq 1$ and $\|x\|_{X} \leq 1$. This easily implies that

$$
\left\{\frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}\right\}_{0<h \leq \frac{r}{2}}
$$

is Cauchy in X, by the same arguments that are used in point (a). The statement follows.

Exercise 12.3 Let H be a complex Hilbert space, and let $A \in L(H)$ be a normal operator, that is, $A A^{*}=A^{*} A$. Show (using induction) that $\left\|A^{n}\right\|=\|A\|^{n}$ for all $n \in \mathbb{N}$. Deduce that the spectral radius of A is equal to $\|A\|_{L(H)}$.

Solution. First we claim that $\left\|A^{n}\right\|_{L(H)}=\|A\|_{L(H)}^{n}$, for every $n \in \mathbb{N} \backslash\{0\}$. We proceed by induction on n. In case $n=1$, the the is nothing to show. Now assume that $\left\|A^{k}\right\|_{L(H)}=\|A\|_{L(H)}^{k}$ for every $k=1, \ldots, n \in \mathbb{N}$. Recall that, for every normal operator, it holds that $\|T x\|_{H}=\left\|T^{*} x\right\|_{H}$ for every $x \in H$ (see Bemerkung 6.7.1. in Struwe's lecture notes). Hence, for every $x \in H$ with $\|x\|_{H}=1$ we have

$$
\begin{aligned}
\left\|T^{n} x\right\|_{H}^{2} & =\left(T^{n} x, T^{n} x\right)_{H}=\left(T^{*} T^{n} x, T^{n-1} x\right)_{H} \leq\left\|T^{*} T^{n} x\right\|_{H}\left\|T^{n-1} x\right\|_{H} \\
& \leq\left\|T^{n+1} x\right\|_{H}\left\|T^{n-1} x\right\|_{H} \leq\left\|T^{n+1}\right\|_{L(H)}\left\|T^{n-1}\right\|_{L(H)} .
\end{aligned}
$$

It follows that

$$
\|T\|_{L(H)}^{2 n}=\left\|T^{n}\right\|_{L(H)}^{2} \leq\left\|T^{n+1}\right\|_{H}\left\|T^{n-1}\right\|_{H}=\left\|T^{n+1}\right\|_{L(H)}\|T\|_{L(H)}^{n-1} .
$$

Thus,

$$
\|T\|_{L(H)}^{n+1} \leq\left\|T^{n+1}\right\|_{L(H)} .
$$

Since the converse inequality always holds, we have that $\|T\|_{L(H)}^{n+1}=\left\|T^{n+1}\right\|_{L(H)}$ and our claim follows.

By Satz 6.5.3 in Struwe's lecture notes, we finally get

$$
r_{T}:=\lim _{n \rightarrow+\infty}\left\|T^{n}\right\|_{L(H)}^{\frac{1}{n}}=\|T\|_{L(H)}
$$

and we are done.

Exercise 12.4 Let $k \in C^{0}([0,1] \times[0,1])$, and define the Volterra integral operator $A: C^{0}([0,1]) \rightarrow C^{0}([0,1])$ by

$$
(A u)(x)=\int_{0}^{x} k(x, y) u(y) d y \quad \forall x \in[0,1] .
$$

Compute the spectral radius of A.
Solution. By direct computation, we have

$$
\left(A^{n} u\right)(x)=\int_{0}^{x} \int_{0}^{y_{1}} \cdots \int_{0}^{y_{n-1}} k\left(x, y_{1}\right) k\left(y_{1}, y_{2}\right) \ldots k\left(y_{n-1}, y_{n}\right) u\left(y_{n}\right) d y_{n} \ldots d y_{1}, \quad \forall x \in[0,1] .
$$

Hence,

$$
\left\|A^{n} u\right\|_{C^{0}}=\sup _{x \in[0,1]}\left|\int_{0}^{x} \int_{0}^{y_{1}} \cdots \int_{0}^{y_{n-1}} k\left(x, y_{1}\right) k\left(y_{1}, y_{2}\right) \ldots k\left(y_{n-1}, y_{n}\right) u\left(y_{n}\right) d y_{n} \ldots d y_{1}\right|
$$

and it is trivial to see that

$$
\begin{aligned}
\left\|A^{n}\right\|_{L\left(C^{0}([0,1])\right)} & \leq \sup _{x \in[0,1]} \int_{0}^{x} \int_{0}^{y_{1}} \cdots \int_{0}^{y_{n-1}}\left|k\left(x, y_{1}\right) k\left(y_{1}, y_{2}\right) \ldots k\left(y_{n-1}, y_{n}\right)\right| d y_{n} \ldots d y_{1} \\
& \leq\|k\|_{C^{0}([0,1] \times[0,1])}^{n} \sup _{x \in[0,1]} \int_{0}^{x} \int_{0}^{y_{1}} \cdots \int_{0}^{y_{n-1}} d y_{n} \ldots d y_{1}=\frac{1}{n!}\|k\|_{C^{0}([0,1] \times[0,1])}^{n}
\end{aligned}
$$

Thus, by Stirling's formula, we get

$$
r_{A}=\lim _{n \rightarrow+\infty}\left\|A^{n}\right\|_{L\left(C^{0}([0,1])\right)}^{\frac{1}{n}} \leq\|k\|_{C^{0}([0,1] \times[0,1])} \lim _{n \rightarrow+\infty}\left(\frac{1}{n!}\right)^{\frac{1}{n}}=0 .
$$

