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Exercise 12.1 Let H ⊂ L2(S1) be given by H = ranP , where P : L2(S1) → L2(S1) is
the projection operator given by

(Pf)(θ) :=
+∞∑
n=0

f̂(n)einθ, ∀ θ ∈ [0, 2π].

Given any φ ∈ C0(S1), we define the Toeplitz operator Tφ : H → H by Tφ(u) := P (φu),
for every u ∈ H.

(a) Clearly, ∥Tφ∥L(H) ≤ ∥φ∥L∞ . By explicit computation, for φ(θ) = Ek(θ) = eikθ

(k ∈ N) show that TEk
TEl

− TEkEl
is a compact operator on H for every k, l ∈ Z.

(b) For every φ, ψ ∈ C0(S1), show that TφTψ − Tφψ is a compact operator on H.

Hint. Approximate φ and ψ with linear combinations of exponentials.

(c) Prove that if φ ∈ C0(S1) is nowhere vanishing then Tφ is a Fredholm operator.

Hint. Show that a Fredholm inverse is given by Tψ, with ψ(θ) = (φ(θ))−1 for every
θ ∈ [0, 2π].

(d) Bonus problem. A nowhere vanishing φ ∈ C0(S1) is said to have degree k ∈ Z if φ is
homotopic to Ek through continuous maps of S1 to C∖ {0}. Show that this implies

index(Tφ) = index(TEk
).

Compute this index by explicitly describing ker(TEk
) and ker(T ∗

Ek
).

Solution.

(a) By direct computation we get

((TEk
TEl

)(u))(θ) =
+∞∑
n=k

û(n− (k + l))einθ, ∀ θ ∈ [0, 2π],

((TEkEl
)(u))(θ) =

+∞∑
n=0

û(n− (k + l))einθ, ∀ θ ∈ [0, 2π].

Hence

((TEk
TEl

− TEkEl
)(u))(θ) =


−

k−1∑
n=0

û(n− (k + l))einθ if k > 0

0 if k ≤ 0.

Thus, TEk
TEl

− TEkEl
is compact because it has finite rank.
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(b) By density, we can find {φj}j∈N and {ψj}j∈N of the form

φj(θ) =
N1,j∑
k=1

ake
inkθ, ∀ θ ∈ [0, 2π],

ψj(θ) =
N2,j∑
k=1

bke
imkθ, ∀ θ ∈ [0, 2π],

and such that φj → φ, ψj → ψ uniformly on [0, 2π] as j → +∞. Notice that

Tφj
Tψj

=
N1,j∑
k=1

N2,j∑
h=1

akbhTEnk
TEmh

,

Tφjψj
=

N1,j∑
k=1

N2,j∑
h=1

akbhTEnk
Emh

,

for every j ∈ N. Hence, by point (a) we have that

Tφj
Tψj

− Tφjψj
=

N1,j∑
k=1

N2,j∑
h=1

akbh(TEnk
TEmh

− TEnk
Emh

),

is compact for every i ∈ N because it is a finite linear combination of compact
operators. Moreover,

∥(Tφj
Tψj

− Tφjψj
) − (TφTψ − Tφψ)∥L(H) ≤ ∥(Tφj

− Tφ)Tψj
∥L(H) + ∥Tφ(Tψj

− Tψ)∥L(H)

+ ∥Tφjψj
− Tφψ∥L(H)

= ∥(Tφj−φ)Tψi
∥L(H) + ∥Tφ(Tψj−ψ)∥L(H)

+ ∥Tφjψj−φψ∥L(H)

≤ ∥φj − φ∥L∞∥ψj∥L∞ + ∥φ∥L∞∥ψj − ψ∥L∞

+ ∥φjψj − φψ∥L∞ → 0 (j → +∞).

Thus, TφTψ −Tφψ is compact because it is the limit of sequence of compact operators.

(c) By point (b), we have that

TφTψ − IdH = TφTψ − Tφψ =: K1,

TψTφ − IdH = TψTφ − Tψφ =: K2

are compact operators on H. Hence, by Exercise 10.3, We have that Tφ is compact
because it is invertible modulo compact operators.
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(d) By hypothesis, there exists a continuous homotopy H : S1 × [0, 1] → C∖ {0} such
that such that H(0, θ) = φ(θ) and H(1, θ) = Ek(θ), for every θ ∈ [0, 2π]. Consider
the path γ : [0, 1] → Fred(H) given by γt := TH(t,·). Since

C0(S1,C∖ {0}) ∋ φ 7→ Tφ ∈ Fred(H)

is a continuous linear map (see (a) e.g.) and

[0, 1] ∋ t 7→ H(t, ·) ∈ C0(S1,C∖ {0})

is continuous by definition of homotopy, then we conclude that γ is a continuous path
joining Tφ and TEk

in Fred(H). As the Fredholm index is constant on the connected
components of Fred(H) (see the lecture notes on polybox), we get that

index(Tφ) = index(TEk
).

Now we want to compute index(TEk
) explicitly. In order to do this, we see that

0 ≡ ((TEk
)(u))(θ) =

+∞∑
n=0

û(n− k)einθ

if and only if û(n) = 0 for every n ∈ N such that n ≥ −k. Thus, since u ∈ H, we get

dim ker(TEk
) =

−k if k < 0,
0 if k ≥ 0.

Notice that T ∗
Ek

= TE−k
, for every k ∈ Z. Hence,

dim ker(T ∗
Ek

) = dim ker(TE−k
) =

k if k > 0,
0 if k ≤ 0.

In particular, we obtain that

index(TEk
) = dim ker(TEk

) − dim ker(T ∗
Ek

) = −k, ∀ k ∈ Z.

Exercise 12.2 Let X be a complex Banach space, and let Ω ⊂ C be a non-empty open
subset.

(a) Prove that a sequence {xn}n∈N ⊂ X is a Cauchy sequence if and only if {λ(xn)}n∈N
is a Cauchy sequence uniformly for λ ∈ X∗ with ∥λ∥ ≤ 1. That is, for all ε > 0 there
exists n0 ∈ N so that for all n ≥ n0, we have |λ(xn) − λ(xm)| < ε for n,m ≥ n0 and
for all λ ∈ X∗, ∥λ∥ ≤ 1.

(b) Suppose f : Ω → X is weakly holomorphic, meaning that for all λ ∈ X∗ the complex-
valued function λ ◦ f : Ω → C is holomorphic. Prove that f is holomorphic.
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Hint. Let z0 ∈ Ω. Write λ(f(z0)) as an integral of λ(f(z))/(z − z0) over a small
circle γ around z0, and use this to show that

λ

(
f(z0 + h) − f(z0)

h

)
− d

dz

∣∣∣∣∣
z=z0

(λ ◦ f)

= 1
2πi

∫
γ

[
1
h

( 1
z − (z0 + h) − 1

z − z0

)
− 1

(z − z0)2

]
λ(f(z)) dz.

Using Banach–Steinhaus, show that f(z) is uniformly bounded for z ∈ γ, and use
this and simple estimates for the above integral to show that λ((f(z0 +h) −f(z0))/h)
is uniformly Cauchy for λ ∈ X∗, ∥λ∥ ≤ 1.

(c) By using part (b) and similar arguments, prove the following result. Suppose
f : Ω → L(X) is weakly holomorphic in the sense that for all x ∈ X and λ ∈ X∗ the
function Ω ∋ z 7→ λ(f(z)x) ∈ C is holomorphic. Show that Ω ∋ z 7→ f(z) ∈ L(X) is
holomorphic.

Solution.

(a) First we show that if {xn}n∈N ⊂ X is a Cauchy sequence then {λ(xn)}n∈N is a Cauchy
sequence uniformly for λ ∈ X∗ with ∥λ∥ ≤ 1. Indeed, since {xn}n∈N ⊂ X is Cauchy,
for every ε > 0 there exists n0 ∈ N such that ∥xn − xm∥X < ε for every n,m ∈ N
with n,m ≥ n0. Then, for every λ ∈ X∗ such that ∥λ∥ ≤ 1 and every n,m ≥ n0 we
have

|λ(xn) − λ(xm)| = |λ(xn − xm)| ≤ ∥λ∥∥xn − xm∥X ≤ ∥xn − xm∥X < ε.

Now assume that {λ(xn)}n∈N is a Cauchy sequence uniformly for λ ∈ X∗ with
∥λ∥ ≤ 1. Then, for every ε > 0 there exists n0 ∈ N such that

sup
λ∈X∗

∥λ∥≤1

|λ(xn) − λ(xm)| < ε

for every n,m ∈ N with n,m ≥ n0. Thus,

∥xn − xm∥X = sup
λ∈X∗

∥λ∥≤1

|λ(xn − xm)| = sup
λ∈X∗

∥λ∥≤1

|λ(xn) − λ(xm)| < ε,

for every n,m ∈ N with n,m ≥ n0. The statement follows.

(b) Fix any z0 ∈ Ω and let γ be a circle of radius r centered at z0 such that γ ⊂ Ω. Let
λ ∈ X∗. Notice that, since λ ◦ f : Ω → C is holomorphic, by the Cauchy integral
formula we have

λ(f(z0)) = 1
2πi

∫
γ

λ(f(z))
(z − z0)

dz,
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d

dz

∣∣∣∣∣
z=z0

(λ ◦ f) = 1
2πi

∫
γ

λ(f(z))
(z − z0)2 dz,

and

λ(f(z0 + h)) = 1
2πi

∫
γ

λ(f(z))
(z − (z0 + h)) dz,

for every h ∈ Ω with |h| ≤ r
2 . By linearity of gamma, we get

λ(f(z0 + h)) − λ(f(z0))
h

− d

dz

∣∣∣∣∣
z=z0

(λ ◦ f)

= 1
2πi

∫
γ

[
1
h

(
1

z − (z0 + h) − 1
z − z0

)
− 1

(z − z0)2

]
λ(f(z)) dz

= 1
2πi

∫
γ

(
h

(z − (z0 + h))(z − z0)2

)
λ(f(z)) dz. (1)

Let JX : X → X∗∗ be the standard linear isometry mapping x ∈ X into the
linear functional on X∗ given by

(
JX(x)

)
(λ) = λ(x), for every x ∈ X and λ ∈ X∗.

Consider the family of linear functionals {JX(f(z))}z∈γ. Fix any λ ∈ X∗. Since
λ ◦ f is holomorphic and hence continuous on the compact set γ, for every λ ∈ X∗

there exists Cλ such that |
(
JX(f(z))

)
(λ)| = |λ(f(z))| ≤ Cλ for every z ∈ γ. This

means that the family {JX(f(z))}z∈γ ⊂ X∗∗ is pointwise bounded on X∗∗. By the
Banach-Steinhaus theorem, we have that {JX(f(z))}z∈γ is uniformly bounded in
X∗∗, i.e. there exists C > 0 such that

∥f(z)∥X = ∥JX(f(z))∥X∗∗ ≤ C ∀ z ∈ γ,

where the first equality comes from the fact that JX is an isometry. This immediately
implies that for every λ ∈ X∗ with ∥λ∥ ≤ 1 we have

|λ(f(z))| ≤ ∥f(z)∥X ≤ C ∀ z ∈ γ.

Hence, by (1), for every h1, h2 ∈ C with |h1|, |h2| ≤ r
2 we get∣∣∣∣∣λ(f(z0 + h1)) − λ(f(z0))

h1
− λ(f(z0 + h2)) − λ(f(z0))

h2

∣∣∣∣∣ ≤ C

π

∫
γ

2
r3 dz = 4C

r2 |h1 − h2|.

In particular, we have that{
λ(f(z0 + h)) − λ(f(z0))

h

}
0<h≤ r

2

5 5/8



d-math
Prof. P. Hintz
Assistant: R. Caniato

Functional Analysis I
Exercise Sheet 12

ETH Zürich
Autumn 2022

is uniformly Cauchy for λ ∈ X∗ with ∥λ∥ ≤ 1. By point (a), this implies that{
f(z0 + h) − f(z0)

h

}
0<h≤ r

2

is Cauchy in X. This amounts to saying that f is differentiable at z0. The statement
follows.

(c) Fix any z0 ∈ Ω and let γ be a circle of radius r centered at z0 such that γ ⊂ Ω. Let
λ ∈ X∗ and x ∈ X. Notice that, since λ ◦ (f( · )x) : Ω → C is holomorphic, by the
Cauchy integral formula we have

λ(f(z0)x) = 1
2πi

∫
γ

λ(f(z)x)
(z − z0)

dz,

d

dz

∣∣∣∣∣
z=z0

(λ ◦ (f( · )x)) = 1
2πi

∫
γ

λ(f(z)x)
(z − z0)2 dz,

and

λ(f(z0 + h)x) = 1
2πi

∫
γ

λ(f(z)x)
(z − (z0 + h)) dz,

for every h ∈ Ω with |h| ≤ r
2 . By linearity of gamma, we get

λ(f(z0 + h)x) − λ(f(z0)x)
h

− d

dz

∣∣∣∣∣
z=z0

(λ ◦ (f( · )x))

= 1
2πi

∫
γ

[
1
h

(
1

z − (z0 + h) − 1
z − z0

)
− 1

(z − z0)2

]
λ(f(z)x) dz

= 1
2πi

∫
γ

(
h

(z − (z0 + h))(z − z0)2

)
λ(f(z)x) dz. (2)

By part (b), we know that for every x ∈ X the function Ω ∋ z 7→ f(z)x ∈ X is
holomorphic. This implies that the family of linear operators {f(z)}z∈γ is pointwise
bounded. By the Banach-Steinhaus theorem, we conclude that {f(z)}z∈γ is uniformly
bounded, i.e. that there exists a constant C > 0 such that

∥f(x)∥L(X) ≤ C.

This implies that for every λ ∈ X∗ and x ∈ X such that ∥λ∥X∗ ≤ 1 and ∥x∥X ≤ 1
we have

|λ(f(z)x)| ≤ ∥λ∥X∗∥f(z)∥L(X)∥x∥X ≤ C ∀ z ∈ γ.
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Hence, by (2), for every h1, h2 ∈ C with |h1|, |h2| ≤ r
2 we get∣∣∣∣∣λ(f(z0 + h1)x) − λ(f(z0)x)

h1
− λ(f(z0 + h2)x) − λ(f(z0)x)

h2

∣∣∣∣∣ ≤ C

π

∫
γ

2
r3 dz

= 4C
r2 |h1 − h2|.

In particular, we have that{
λ(f(z0 + h)x) − λ(f(z0)x)

h

}
0<h≤ r

2

=
{
λ((f(z0 + h) − f(z0))x)

h

}
0<h≤ r

2

is uniformly Cauchy for λ ∈ X∗ and x ∈ X with ∥λ∥X∗ ≤ 1 and ∥x∥X ≤ 1. This
easily implies that {

f(z0 + h) − f(z0)
h

}
0<h≤ r

2

is Cauchy in X, by the same arguments that are used in point (a). The statement
follows.

Exercise 12.3 Let H be a complex Hilbert space, and let A ∈ L(H) be a normal
operator, that is, AA∗ = A∗A. Show (using induction) that ∥An∥ = ∥A∥n for all n ∈ N.
Deduce that the spectral radius of A is equal to ∥A∥L(H).

Solution. First we claim that ∥An∥L(H) = ∥A∥nL(H), for every n ∈ N∖ {0}. We proceed
by induction on n. In case n = 1, the the is nothing to show. Now assume that
∥Ak∥L(H) = ∥A∥kL(H) for every k = 1, ..., n ∈ N. Recall that, for every normal operator, it
holds that ∥Tx∥H = ∥T ∗x∥H for every x ∈ H (see Bemerkung 6.7.1. in Struwe’s lecture
notes). Hence, for every x ∈ H with ∥x∥H = 1 we have

∥T nx∥2
H = (T nx, T nx)H = (T ∗T nx, T n−1x)H ≤ ∥T ∗T nx∥H∥T n−1x∥H

≤ ∥T n+1x∥H∥T n−1x∥H ≤ ∥T n+1∥L(H)∥T n−1∥L(H).

It follows that

∥T∥2n
L(H) = ∥T n∥2

L(H) ≤ ∥T n+1∥H∥T n−1∥H = ∥T n+1∥L(H)∥T∥n−1
L(H).

Thus,

∥T∥n+1
L(H) ≤ ∥T n+1∥L(H).
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Since the converse inequality always holds, we have that ∥T∥n+1
L(H) = ∥T n+1∥L(H) and our

claim follows.

By Satz 6.5.3 in Struwe’s lecture notes, we finally get

rT := lim
n→+∞

∥T n∥
1
n

L(H) = ∥T∥L(H)

and we are done.

Exercise 12.4 Let k ∈ C0([0, 1] × [0, 1]), and define the Volterra integral operator
A : C0([0, 1]) → C0([0, 1]) by

(Au)(x) =
∫ x

0
k(x, y)u(y) dy ∀x ∈ [0, 1].

Compute the spectral radius of A.

Solution. By direct computation, we have

(Anu)(x) =
∫ x

0

∫ y1

0
· · ·

∫ yn−1

0
k(x, y1)k(y1, y2) . . . k(yn−1, yn)u(yn) dyn . . . dy1, ∀x ∈ [0, 1].

Hence,

∥Anu∥C0 = sup
x∈[0,1]

∣∣∣∣∣
∫ x

0

∫ y1

0
· · ·

∫ yn−1

0
k(x, y1)k(y1, y2) . . . k(yn−1, yn)u(yn) dyn . . . dy1

∣∣∣∣∣.
and it is trivial to see that

∥An∥L(C0([0,1])) ≤ sup
x∈[0,1]

∫ x

0

∫ y1

0
· · ·

∫ yn−1

0
|k(x, y1)k(y1, y2) . . . k(yn−1, yn)| dyn . . . dy1

≤ ∥k∥nC0([0,1]×[0,1]) sup
x∈[0,1]

∫ x

0

∫ y1

0
· · ·

∫ yn−1

0
dyn . . . dy1 = 1

n!∥k∥nC0([0,1]×[0,1])

Thus, by Stirling’s formula, we get

rA = lim
n→+∞

∥An∥
1
n

L(C0([0,1])) ≤ ∥k∥C0([0,1]×[0,1]) lim
n→+∞

(
1
n!

) 1
n

= 0.
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