Exercise 12.1 Let $H \subset L^2(\mathbb{S}^1)$ be given by $H = \operatorname{ran} P$, where $P : L^2(\mathbb{S}^1) \to L^2(\mathbb{S}^1)$ is the projection operator given by

$$(Pf)(\theta) := \sum_{n=0}^{+\infty} \hat{f}(n)e^{in\theta}, \qquad \forall \, \theta \in [0, 2\pi].$$

Given any $\varphi \in C^0(\mathbb{S}^1)$, we define the Toeplitz operator $T_{\varphi} : H \to H$ by $T_{\varphi}(u) := P(\varphi u)$, for every $u \in H$.

- (a) Clearly, $||T_{\varphi}||_{L(H)} \leq ||\varphi||_{L^{\infty}}$. By explicit computation, for $\varphi(\theta) = E_k(\theta) = e^{ik\theta}$ $(k \in \mathbb{N})$ show that $T_{E_k}T_{E_l} - T_{E_kE_l}$ is a compact operator on H for every $k, l \in \mathbb{Z}$.
- (b) For every $\varphi, \psi \in C^0(\mathbb{S}^1)$, show that $T_{\varphi}T_{\psi} T_{\varphi\psi}$ is a compact operator on H. Hint. Approximate φ and ψ with linear combinations of exponentials.
- (c) Prove that if $\varphi \in C^0(\mathbb{S}^1)$ is nowhere vanishing then T_{φ} is a Fredholm operator.

Hint. Show that a Fredholm inverse is given by T_{ψ} , with $\psi(\theta) = (\varphi(\theta))^{-1}$ for every $\theta \in [0, 2\pi]$.

(d) Bonus problem. A nowhere vanishing $\varphi \in C^0(\mathbb{S}^1)$ is said to have degree $k \in \mathbb{Z}$ if φ is homotopic to E_k through continuous maps of \mathbb{S}^1 to $\mathbb{C} \setminus \{0\}$. Show that this implies

$$\operatorname{index}(T_{\varphi}) = \operatorname{index}(T_{E_k}).$$

Compute this index by explicitly describing $\ker(T_{E_k})$ and $\ker(T_{E_k}^*)$.

Solution.

(a) By direct computation we get

$$((T_{E_k}T_{E_l})(u))(\theta) = \sum_{n=k}^{+\infty} \hat{u}(n-(k+l))e^{in\theta}, \quad \forall \theta \in [0, 2\pi],$$
$$((T_{E_kE_l})(u))(\theta) = \sum_{n=0}^{+\infty} \hat{u}(n-(k+l))e^{in\theta}, \quad \forall \theta \in [0, 2\pi].$$

Hence

$$((T_{E_k}T_{E_l} - T_{E_kE_l})(u))(\theta) = \begin{cases} -\sum_{n=0}^{k-1} \hat{u}(n - (k+l))e^{in\theta} & \text{if } k > 0\\ 0 & \text{if } k \le 0. \end{cases}$$

Thus, $T_{E_k}T_{E_l} - T_{E_kE_l}$ is compact because it has finite rank.

Last modified: 10 January 2023

(b) By density, we can find $\{\varphi_j\}_{j\in\mathbb{N}}$ and $\{\psi_j\}_{j\in\mathbb{N}}$ of the form

$$\varphi_j(\theta) = \sum_{k=1}^{N_{1,j}} a_k e^{in_k \theta}, \qquad \forall \theta \in [0, 2\pi],$$
$$\psi_j(\theta) = \sum_{k=1}^{N_{2,j}} b_k e^{im_k \theta}, \qquad \forall \theta \in [0, 2\pi],$$

and such that $\varphi_j \to \varphi, \psi_j \to \psi$ uniformly on $[0, 2\pi]$ as $j \to +\infty$. Notice that

$$T_{\varphi_j} T_{\psi_j} = \sum_{k=1}^{N_{1,j}} \sum_{h=1}^{N_{2,j}} a_k b_h T_{E_{n_k}} T_{E_{m_h}},$$
$$T_{\varphi_j \psi_j} = \sum_{k=1}^{N_{1,j}} \sum_{h=1}^{N_{2,j}} a_k b_h T_{E_{n_k} E_{m_h}},$$

for every $j \in \mathbb{N}$. Hence, by point (a) we have that

$$T_{\varphi_j}T_{\psi_j} - T_{\varphi_j\psi_j} = \sum_{k=1}^{N_{1,j}} \sum_{h=1}^{N_{2,j}} a_k b_h (T_{E_{n_k}}T_{E_{m_h}} - T_{E_{n_k}E_{m_h}}),$$

is compact for every $i \in \mathbb{N}$ because it is a finite linear combination of compact operators. Moreover,

$$\begin{aligned} \| (T_{\varphi_{j}}T_{\psi_{j}} - T_{\varphi_{j}\psi_{j}}) - (T_{\varphi}T_{\psi} - T_{\varphi\psi}) \|_{L(H)} &\leq \| (T_{\varphi_{j}} - T_{\varphi})T_{\psi_{j}} \|_{L(H)} + \| T_{\varphi}(T_{\psi_{j}} - T_{\psi}) \|_{L(H)} \\ &+ \| T_{\varphi_{j}\psi_{j}} - T_{\varphi\psi} \|_{L(H)} \\ &= \| (T_{\varphi_{j}-\varphi})T_{\psi_{i}} \|_{L(H)} + \| T_{\varphi}(T_{\psi_{j}-\psi}) \|_{L(H)} \\ &+ \| T_{\varphi_{j}\psi_{j}-\varphi\psi} \|_{L(H)} \\ &\leq \| \varphi_{j} - \varphi \|_{L^{\infty}} \| \psi_{j} \|_{L^{\infty}} + \| \varphi \|_{L^{\infty}} \| \psi_{j} - \psi \|_{L^{\infty}} \\ &+ \| \varphi_{j}\psi_{j} - \varphi\psi \|_{L^{\infty}} \to 0 \quad (j \to +\infty). \end{aligned}$$

Thus, $T_{\varphi}T_{\psi} - T_{\varphi\psi}$ is compact because it is the limit of sequence of compact operators. (c) By point (b), we have that

$$T_{\varphi}T_{\psi} - \mathrm{Id}_{H} = T_{\varphi}T_{\psi} - T_{\varphi\psi} =: K_{1},$$

$$T_{\psi}T_{\varphi} - \mathrm{Id}_{H} = T_{\psi}T_{\varphi} - T_{\psi\varphi} =: K_{2}$$

are compact operators on H. Hence, by Exercise 10.3, We have that T_{φ} is compact because it is invertible modulo compact operators.

(d) By hypothesis, there exists a continuous homotopy $H : \mathbb{S}^1 \times [0, 1] \to \mathbb{C} \setminus \{0\}$ such that such that $H(0, \theta) = \varphi(\theta)$ and $H(1, \theta) = E_k(\theta)$, for every $\theta \in [0, 2\pi]$. Consider the path $\gamma : [0, 1] \to \operatorname{Fred}(H)$ given by $\gamma_t := T_{H(t, \cdot)}$. Since

$$C^0(\mathbb{S}^1, \mathbb{C} \smallsetminus \{0\}) \ni \varphi \mapsto T_\varphi \in \operatorname{Fred}(H)$$

is a continuous linear map (see (a) e.g.) and

$$[0,1] \ni t \mapsto H(t,\cdot) \in C^0(\mathbb{S}^1, \mathbb{C} \smallsetminus \{0\})$$

is continuous by definition of homotopy, then we conclude that γ is a continuous path joining T_{φ} and T_{E_k} in Fred(H). As the Fredholm index is constant on the connected components of Fred(H) (see the lecture notes on polybox), we get that

$$\operatorname{index}(T_{\varphi}) = \operatorname{index}(T_{E_k}).$$

Now we want to compute index (T_{E_k}) explicitly. In order to do this, we see that

$$0 \equiv ((T_{E_k})(u))(\theta) = \sum_{n=0}^{+\infty} \hat{u}(n-k)e^{in\theta}$$

if and only if $\hat{u}(n) = 0$ for every $n \in \mathbb{N}$ such that $n \geq -k$. Thus, since $u \in H$, we get

$$\dim \ker(T_{E_k}) = \begin{cases} -k & \text{if } k < 0, \\ 0 & \text{if } k \ge 0. \end{cases}$$

Notice that $T_{E_k}^* = T_{E_{-k}}$, for every $k \in \mathbb{Z}$. Hence,

$$\dim \ker(T_{E_k}^*) = \dim \ker(T_{E_{-k}}) = \begin{cases} k & \text{if } k > 0, \\ 0 & \text{if } k \le 0. \end{cases}$$

In particular, we obtain that

$$\operatorname{index}(T_{E_k}) = \dim \operatorname{ker}(T_{E_k}) - \dim \operatorname{ker}(T_{E_k}^*) = -k, \quad \forall k \in \mathbb{Z}.$$

Exercise 12.2 Let X be a complex Banach space, and let $\Omega \subset \mathbb{C}$ be a non-empty open subset.

- (a) Prove that a sequence $\{x_n\}_{n\in\mathbb{N}}\subset X$ is a Cauchy sequence if and only if $\{\lambda(x_n)\}_{n\in\mathbb{N}}$ is a Cauchy sequence uniformly for $\lambda \in X^*$ with $\|\lambda\| \leq 1$. That is, for all $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ so that for all $n \geq n_0$, we have $|\lambda(x_n) - \lambda(x_m)| < \varepsilon$ for $n, m \geq n_0$ and for all $\lambda \in X^*$, $\|\lambda\| \leq 1$.
- (b) Suppose $f: \Omega \to X$ is weakly holomorphic, meaning that for all $\lambda \in X^*$ the complexvalued function $\lambda \circ f: \Omega \to \mathbb{C}$ is holomorphic. Prove that f is holomorphic.

3/8

Hint. Let $z_0 \in \Omega$. Write $\lambda(f(z_0))$ as an integral of $\lambda(f(z))/(z-z_0)$ over a small circle γ around z_0 , and use this to show that

$$\begin{split} \lambda \left(\frac{f(z_0 + h) - f(z_0)}{h} \right) &- \left. \frac{d}{dz} \right|_{z=z_0} (\lambda \circ f) \\ &= \frac{1}{2\pi i} \int_{\gamma} \left[\frac{1}{h} \left(\frac{1}{z - (z_0 + h)} - \frac{1}{z - z_0} \right) - \frac{1}{(z - z_0)^2} \right] \lambda(f(z)) \, dz \end{split}$$

Using Banach–Steinhaus, show that f(z) is uniformly bounded for $z \in \gamma$, and use this and simple estimates for the above integral to show that $\lambda((f(z_0 + h) - f(z_0))/h)$ is uniformly Cauchy for $\lambda \in X^*$, $\|\lambda\| \leq 1$.

(c) By using part (b) and similar arguments, prove the following result. Suppose $f: \Omega \to L(X)$ is weakly holomorphic in the sense that for all $x \in X$ and $\lambda \in X^*$ the function $\Omega \ni z \mapsto \lambda(f(z)x) \in \mathbb{C}$ is holomorphic. Show that $\Omega \ni z \mapsto f(z) \in L(X)$ is holomorphic.

Solution.

(a) First we show that if $\{x_n\}_{n\in\mathbb{N}}\subset X$ is a Cauchy sequence then $\{\lambda(x_n)\}_{n\in\mathbb{N}}$ is a Cauchy sequence uniformly for $\lambda\in X^*$ with $\|\lambda\|\leq 1$. Indeed, since $\{x_n\}_{n\in\mathbb{N}}\subset X$ is Cauchy, for every $\varepsilon > 0$ there exists $n_0\in\mathbb{N}$ such that $\|x_n-x_m\|_X<\varepsilon$ for every $n,m\in\mathbb{N}$ with $n,m\geq n_0$. Then, for every $\lambda\in X^*$ such that $\|\lambda\|\leq 1$ and every $n,m\geq n_0$ we have

$$|\lambda(x_n) - \lambda(x_m)| = |\lambda(x_n - x_m)| \le ||\lambda|| ||x_n - x_m||_X \le ||x_n - x_m||_X < \varepsilon.$$

Now assume that $\{\lambda(x_n)\}_{n\in\mathbb{N}}$ is a Cauchy sequence uniformly for $\lambda \in X^*$ with $\|\lambda\| \leq 1$. Then, for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that

$$\sup_{\substack{\lambda \in X^* \\ \|\lambda\| \le 1}} |\lambda(x_n) - \lambda(x_m)| < \varepsilon$$

for every $n, m \in \mathbb{N}$ with $n, m \geq n_0$. Thus,

$$\|x_n - x_m\|_X = \sup_{\substack{\lambda \in X^* \\ \|\lambda\| \le 1}} |\lambda(x_n - x_m)| = \sup_{\substack{\lambda \in X^* \\ \|\lambda\| \le 1}} |\lambda(x_n) - \lambda(x_m)| < \varepsilon,$$

for every $n, m \in \mathbb{N}$ with $n, m \ge n_0$. The statement follows.

(b) Fix any $z_0 \in \Omega$ and let γ be a circle of radius r centered at z_0 such that $\gamma \subset \Omega$. Let $\lambda \in X^*$. Notice that, since $\lambda \circ f : \Omega \to \mathbb{C}$ is holomorphic, by the Cauchy integral formula we have

$$\lambda(f(z_0)) = \frac{1}{2\pi i} \int_{\gamma} \frac{\lambda(f(z))}{(z - z_0)} dz,$$

$$\left. \frac{d}{dz} \right|_{z=z_0} (\lambda \circ f) = \frac{1}{2\pi i} \int_{\gamma} \frac{\lambda(f(z))}{(z-z_0)^2} \, dz,$$

and

$$\lambda(f(z_0+h)) = \frac{1}{2\pi i} \int_{\gamma} \frac{\lambda(f(z))}{(z-(z_0+h))} dz$$

for every $h \in \Omega$ with $|h| \leq \frac{r}{2}$. By linearity of gamma, we get

$$\frac{\lambda(f(z_0+h)) - \lambda(f(z_0))}{h} - \left. \frac{d}{dz} \right|_{z=z_0} (\lambda \circ f) \\
= \frac{1}{2\pi i} \int_{\gamma} \left[\frac{1}{h} \left(\frac{1}{z - (z_0+h)} - \frac{1}{z - z_0} \right) - \frac{1}{(z - z_0)^2} \right] \lambda(f(z)) \, dz \\
= \frac{1}{2\pi i} \int_{\gamma} \left(\frac{h}{(z - (z_0+h))(z - z_0)^2} \right) \lambda(f(z)) \, dz.$$
(1)

Let $J_X : X \to X^{**}$ be the standard linear isometry mapping $x \in X$ into the linear functional on X^* given by $(J_X(x))(\lambda) = \lambda(x)$, for every $x \in X$ and $\lambda \in X^*$. Consider the family of linear functionals $\{J_X(f(z))\}_{z\in\gamma}$. Fix any $\lambda \in X^*$. Since $\lambda \circ f$ is holomorphic and hence continuous on the compact set γ , for every $\lambda \in X^*$ there exists C_λ such that $|(J_X(f(z)))(\lambda)| = |\lambda(f(z))| \leq C_\lambda$ for every $z \in \gamma$. This means that the family $\{J_X(f(z))\}_{z\in\gamma} \subset X^{**}$ is pointwise bounded on X^{**} . By the Banach-Steinhaus theorem, we have that $\{J_X(f(z))\}_{z\in\gamma}$ is uniformly bounded in X^{**} , i.e. there exists C > 0 such that

$$||f(z)||_X = ||J_X(f(z))||_{X^{**}} \le C \qquad \forall z \in \gamma,$$

where the first equality comes from the fact that J_X is an isometry. This immediately implies that for every $\lambda \in X^*$ with $\|\lambda\| \leq 1$ we have

$$|\lambda(f(z))| \le ||f(z)||_X \le C \qquad \forall z \in \gamma.$$

Hence, by (1), for every $h_1, h_2 \in \mathbb{C}$ with $|h_1|, |h_2| \leq \frac{r}{2}$ we get

$$\left|\frac{\lambda(f(z_0+h_1))-\lambda(f(z_0))}{h_1}-\frac{\lambda(f(z_0+h_2))-\lambda(f(z_0))}{h_2}\right| \le \frac{C}{\pi} \int_{\gamma} \frac{2}{r^3} dz = \frac{4C}{r^2} |h_1-h_2|.$$

In particular, we have that

$$\left\{\frac{\lambda(f(z_0+h))-\lambda(f(z_0))}{h}\right\}_{0 < h \le \frac{r}{2}}$$

5

is uniformly Cauchy for $\lambda \in X^*$ with $\|\lambda\| \leq 1$. By point (a), this implies that

$$\left\{\frac{f(z_0+h) - f(z_0)}{h}\right\}_{0 < h \le \frac{r}{2}}$$

is Cauchy in X. This amounts to saying that f is differentiable at z_0 . The statement follows.

(c) Fix any $z_0 \in \Omega$ and let γ be a circle of radius r centered at z_0 such that $\gamma \subset \Omega$. Let $\lambda \in X^*$ and $x \in X$. Notice that, since $\lambda \circ (f(\cdot)x) : \Omega \to \mathbb{C}$ is holomorphic, by the Cauchy integral formula we have

$$\lambda(f(z_0)x) = \frac{1}{2\pi i} \int_{\gamma} \frac{\lambda(f(z)x)}{(z-z_0)} dz,$$
$$\frac{d}{dz}\Big|_{z=z_0} \left(\lambda \circ (f(\cdot)x)\right) = \frac{1}{2\pi i} \int_{\gamma} \frac{\lambda(f(z)x)}{(z-z_0)^2} dz,$$

and

$$\lambda(f(z_0+h)x) = \frac{1}{2\pi i} \int_{\gamma} \frac{\lambda(f(z)x)}{(z-(z_0+h))} \, dz,$$

for every $h \in \Omega$ with $|h| \leq \frac{r}{2}$. By linearity of gamma, we get

$$\frac{\lambda(f(z_0+h)x) - \lambda(f(z_0)x)}{h} - \frac{d}{dz}\Big|_{z=z_0} (\lambda \circ (f(\cdot)x))$$

$$= \frac{1}{2\pi i} \int_{\gamma} \left[\frac{1}{h} \left(\frac{1}{z - (z_0 + h)} - \frac{1}{z - z_0} \right) - \frac{1}{(z - z_0)^2} \right] \lambda(f(z)x) dz$$

$$= \frac{1}{2\pi i} \int_{\gamma} \left(\frac{h}{(z - (z_0 + h))(z - z_0)^2} \right) \lambda(f(z)x) dz.$$
(2)

By part (b), we know that for every $x \in X$ the function $\Omega \ni z \mapsto f(z)x \in X$ is holomorphic. This implies that the family of linear operators $\{f(z)\}_{z\in\gamma}$ is pointwise bounded. By the Banach-Steinhaus theorem, we conclude that $\{f(z)\}_{z\in\gamma}$ is uniformly bounded, i.e. that there exists a constant C > 0 such that

$$\|f(x)\|_{L(X)} \le C.$$

This implies that for every $\lambda \in X^*$ and $x \in X$ such that $\|\lambda\|_{X^*} \leq 1$ and $\|x\|_X \leq 1$ we have

$$|\lambda(f(z)x)| \le \|\lambda\|_{X^*} \|f(z)\|_{L(X)} \|x\|_X \le C \qquad \forall z \in \gamma.$$

Hence, by (2), for every $h_1, h_2 \in \mathbb{C}$ with $|h_1|, |h_2| \leq \frac{r}{2}$ we get

$$\left|\frac{\lambda(f(z_0+h_1)x) - \lambda(f(z_0)x)}{h_1} - \frac{\lambda(f(z_0+h_2)x) - \lambda(f(z_0)x)}{h_2}\right| \le \frac{C}{\pi} \int_{\gamma} \frac{2}{r^3} dz$$
$$= \frac{4C}{r^2} |h_1 - h_2|.$$

In particular, we have that

$$\left\{\frac{\lambda(f(z_0+h)x) - \lambda(f(z_0)x)}{h}\right\}_{0 < h \le \frac{r}{2}} = \left\{\frac{\lambda((f(z_0+h) - f(z_0))x)}{h}\right\}_{0 < h \le \frac{r}{2}}$$

is uniformly Cauchy for $\lambda \in X^*$ and $x \in X$ with $\|\lambda\|_{X^*} \leq 1$ and $\|x\|_X \leq 1$. This easily implies that

$$\left\{\frac{f(z_0 + h) - f(z_0)}{h}\right\}_{0 < h \le \frac{r}{2}}$$

is Cauchy in X, by the same arguments that are used in point (a). The statement follows.

Exercise 12.3 Let H be a complex Hilbert space, and let $A \in L(H)$ be a normal operator, that is, $AA^* = A^*A$. Show (using induction) that $||A^n|| = ||A||^n$ for all $n \in \mathbb{N}$. Deduce that the spectral radius of A is equal to $||A||_{L(H)}$.

Solution. First we claim that $||A^n||_{L(H)} = ||A||_{L(H)}^n$, for every $n \in \mathbb{N} \setminus \{0\}$. We proceed by induction on n. In case n = 1, the the is nothing to show. Now assume that $||A^k||_{L(H)} = ||A||_{L(H)}^k$ for every $k = 1, ..., n \in \mathbb{N}$. Recall that, for every normal operator, it holds that $||Tx||_H = ||T^*x||_H$ for every $x \in H$ (see Bemerkung 6.7.1. in Struwe's lecture notes). Hence, for every $x \in H$ with $||x||_H = 1$ we have

$$||T^n x||_H^2 = (T^n x, T^n x)_H = (T^* T^n x, T^{n-1} x)_H \le ||T^* T^n x||_H ||T^{n-1} x||_H$$
$$\le ||T^{n+1} x||_H ||T^{n-1} x||_H \le ||T^{n+1} ||_{L(H)} ||T^{n-1} ||_{L(H)}.$$

It follows that

$$||T||_{L(H)}^{2n} = ||T^n||_{L(H)}^2 \le ||T^{n+1}||_H ||T^{n-1}||_H = ||T^{n+1}||_{L(H)} ||T||_{L(H)}^{n-1}.$$

Thus,

$$||T||_{L(H)}^{n+1} \le ||T^{n+1}||_{L(H)}.$$

Since the converse inequality always holds, we have that $||T||_{L(H)}^{n+1} = ||T^{n+1}||_{L(H)}$ and our claim follows.

By Satz 6.5.3 in Struwe's lecture notes, we finally get

$$r_T := \lim_{n \to +\infty} \|T^n\|_{L(H)}^{\frac{1}{n}} = \|T\|_{L(H)}$$

and we are done.

Exercise 12.4 Let $k \in C^0([0,1] \times [0,1])$, and define the Volterra integral operator $A: C^0([0,1]) \to C^0([0,1])$ by

$$(Au)(x) = \int_0^x k(x, y)u(y) \, dy \qquad \forall x \in [0, 1].$$

Compute the spectral radius of A.

Solution. By direct computation, we have

$$(A^{n}u)(x) = \int_{0}^{x} \int_{0}^{y_{1}} \cdots \int_{0}^{y_{n-1}} k(x, y_{1})k(y_{1}, y_{2}) \dots k(y_{n-1}, y_{n})u(y_{n}) \, dy_{n} \dots \, dy_{1}, \quad \forall x \in [0, 1].$$

Hence,

$$||A^{n}u||_{C^{0}} = \sup_{x \in [0,1]} \left| \int_{0}^{x} \int_{0}^{y_{1}} \cdots \int_{0}^{y_{n-1}} k(x, y_{1})k(y_{1}, y_{2}) \dots k(y_{n-1}, y_{n})u(y_{n}) \, dy_{n} \dots \, dy_{1} \right|.$$

and it is trivial to see that

$$\begin{split} \|A^n\|_{L(C^0([0,1]))} &\leq \sup_{x \in [0,1]} \int_0^x \int_0^{y_1} \cdots \int_0^{y_{n-1}} |k(x,y_1)k(y_1,y_2) \dots k(y_{n-1},y_n)| \, dy_n \dots \, dy_1 \\ &\leq \|k\|_{C^0([0,1] \times [0,1])}^n \sup_{x \in [0,1]} \int_0^x \int_0^{y_1} \cdots \int_0^{y_{n-1}} \, dy_n \dots \, dy_1 = \frac{1}{n!} \|k\|_{C^0([0,1] \times [0,1])}^n \end{split}$$

Thus, by Stirling's formula, we get

$$r_A = \lim_{n \to +\infty} \|A^n\|_{L(C^0([0,1]))}^{\frac{1}{n}} \le \|k\|_{C^0([0,1]\times[0,1])} \lim_{n \to +\infty} \left(\frac{1}{n!}\right)^{\frac{1}{n}} = 0.$$