Exercise 2.1 Let

$$
c_{0}:=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} \text { s.t. } \lim _{n \rightarrow+\infty} a_{n}=0\right\} \subset \ell^{\infty} .
$$

(a) Prove that $\left(c_{0}\right)^{*} \cong \ell^{1}$, i.e. show that there exists a surjective isometry $I: \ell^{1} \rightarrow\left(c_{0}\right)^{*}$.
(b) Prove that $\left(\ell^{1}\right)^{*} \cong \ell^{\infty}$, i.e. show that there exists a surjective isometry $\tilde{I}: \ell^{\infty} \rightarrow\left(\ell^{1}\right)^{*}$.
(c) Prove that there exists a continuous and linear functional $\lambda: \ell^{\infty} \rightarrow \mathbb{R}$ such that

$$
\liminf _{n \rightarrow+\infty} a_{n} \leq \lambda\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right) \leq \limsup _{n \rightarrow+\infty} a_{n}, \quad \forall\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} .
$$

Show that such functional is not of the form

$$
\lambda\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right)=\sum_{n=0}^{+\infty} x_{n} a_{n}, \quad \forall\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}
$$

for some sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1}$.

Solution.

(a) Given any sequence $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{1}$, we let $\lambda_{a}: c_{0} \rightarrow \mathbb{R}$ be given by

$$
\lambda_{a}(x):=\sum_{n=0}^{+\infty} a_{n} x_{n}, \quad \forall x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0}
$$

Clearly, λ_{a} is \mathbb{R}-linear. We notice that

$$
\left|\lambda_{a}(x)\right| \leq \sum_{n=0}^{+\infty}\left|a_{n}\right|\left|x_{n}\right| \leq\|a\|_{\ell^{1}}\|x\|_{\ell \infty}<+\infty, \quad \forall x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0} .
$$

This immediately implies that $\lambda_{a} \in\left(c_{0}\right)^{*}$ is well-defined and $\left\|\lambda_{a}\right\|_{\left(c_{0}\right)^{*}} \leq\|a\|_{\ell^{1}}$. Consider the sequence $\left(x^{(k)}\right)_{k \in \mathbb{N}} \subset c_{0}$ given by

$$
x_{n}^{(k)}:= \begin{cases}\operatorname{sgn}\left(a_{n}\right) & \text { if } n \leq k, \tag{1}\\ 0 & \text { if } n>k,\end{cases}
$$

for every $n, k \in \mathbb{N}$. Notice that $\left\|x^{(k)}\right\|_{\ell^{\infty}}=1$ for every $k \in \mathbb{N}$ and

$$
\lambda_{a}\left(x^{(k)}\right)=\sum_{n=0}^{k}\left|a_{n}\right| \rightarrow\|a\|_{\ell^{1}} \quad(k \rightarrow+\infty) .
$$

Hence, we conclude $\left\|\lambda_{a}\right\|_{\left(c_{0}\right)^{*}}=\|a\|_{\ell^{1}}$.
We define the linear map $I: \ell^{1} \rightarrow\left(c_{0}\right)^{*}$ given by $I(a):=\lambda_{a}$, for every $a \in \ell^{1}$. From what we have proved so far, it follows that I is a linear isometry. In order to conclude, we just need to show that I is surjective. Indeed, pick any $\lambda \in\left(c_{0}\right)^{*}$ and define $a=\left(a_{n}\right)_{n \in \mathbb{N}}$ by $a_{n}:=\lambda\left(e^{(n)}\right)$ with

$$
e_{k}^{(n)}= \begin{cases}1 & \text { if } k=n, \\ 0 & \text { if } k \neq n,\end{cases}
$$

for every $n, k \in \mathbb{N}$. Notice that, for every given $k \in \mathbb{N}$, we have

$$
\sum_{n=0}^{k}\left|a_{n}\right|=\lambda\left(x^{(k)}\right) \leq\|\lambda\|_{\left(c_{0}\right)^{*}}
$$

where $\left(x^{(k)}\right)_{k \in \mathbb{N}} \subset c_{0}$ is defined as in (1). By letting $k \rightarrow+\infty$ in the previous inequality we get

$$
\|a\|_{\ell^{1}} \leq\|\lambda\|_{\left(c_{0}\right)^{*}}<+\infty
$$

i.e. $a \in \ell^{1}$. In order to conclude, we claim that $I(a)=\lambda_{a}=\lambda$. Indeed, first notice that for all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0}$ we have

$$
\left\|\sum_{n=0}^{k} x_{n} e^{(n)}-x\right\|_{\ell \infty}=\sup _{n \geq k}\left|x_{n}\right| \rightarrow 0 \quad(k \rightarrow+\infty)
$$

Hence, by continuity and linearity of λ we get

$$
\begin{aligned}
\lambda(x) & =\lambda\left(\lim _{k \rightarrow+\infty} \sum_{n=0}^{k} x_{n} e^{(n)}\right)=\lim _{k \rightarrow+\infty} \lambda\left(\sum_{n=0}^{k} x_{n} e^{(n)}\right) \\
& =\lim _{k \rightarrow+\infty} \sum_{n=0}^{k} x_{n} \lambda\left(e^{(n)}\right)=\lim _{k \rightarrow+\infty} \sum_{n=0}^{k} a_{n} x_{n}=\lambda_{a}(x), \quad \forall x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0} .
\end{aligned}
$$

The statement follows.
(b) Given any sequence $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}$, we let $\lambda_{a}: \ell^{1} \rightarrow \mathbb{R}$ be given by

$$
\lambda_{a}(x):=\sum_{n=0}^{+\infty} a_{n} x_{n}, \quad \forall x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1} .
$$

Clearly, λ_{a} is \mathbb{R}-linear. We notice that

$$
\left|\lambda_{a}(x)\right| \leq \sum_{n=0}^{+\infty}\left|a_{n}\left\|x_{n} \mid \leq\right\| a\left\|_{\ell \infty}\right\| x \|_{\ell^{1}}<+\infty, \quad \forall x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1} .\right.
$$

This immediately implies that $\lambda_{a} \in\left(\ell^{1}\right)^{*}$ is well-defined and $\left\|\lambda_{a}\right\|_{\left(\ell^{1}\right)^{*}} \leq\|a\|_{\ell \infty}$. Consider the sequence $\left(e^{(k)}\right)_{k \in \mathbb{N}} \subset \ell^{1}$ given as in point (a). Notice that $\left\|e^{\overline{(k)}}\right\|_{\ell^{1}}=1$ for every $k \in \mathbb{N}$ and

$$
\left\|\lambda_{a}\right\|_{\left(\ell^{1}\right) *} \geq \sup _{k \in \mathbb{N}} \lambda_{a}\left(x^{(k)}\right)=\sup _{k \in \mathbb{N}}\left|a_{k}\right|=\|a\|_{\ell \infty} .
$$

Hence, we conclude $\left\|\lambda_{a}\right\|_{\left(\ell^{1}\right)^{*}}=\|a\|_{\ell^{\infty}}$.
We define the linear map $\tilde{I}: \ell^{\infty} \rightarrow\left(\ell^{1}\right)^{*}$ given by $\tilde{I}(a):=\lambda_{a}$, for every $a \in \ell^{\infty}$. From what we have proved so far, it follows that \tilde{I} is a linear isometry. In order to conclude, we just need to show that \tilde{I} is surjective. Indeed, pick any $\lambda \in\left(\ell^{1}\right)^{*}$ and define $a=\left(a_{n}\right)_{n \in \mathbb{N}}$ by $a_{n}:=\lambda\left(e^{(n)}\right)$ with $\left(e^{(n)}\right)_{n \in \mathbb{N}} \subset \ell^{1}$ given as in point (a). Notice that, for every given $n \in \mathbb{N}$, we have

$$
\left|a_{n}\right|=\left|\lambda\left(e^{(n)}\right)\right| \leq\|\lambda\|_{\left(\ell^{1}\right)^{*}},
$$

By taking the supremum over $n \in \mathbb{N}$ in the previous inequality we get

$$
\|a\|_{\ell_{\infty}} \leq\|\lambda\|_{\left(\ell^{1}\right)^{*}}<+\infty,
$$

i.e. $a \in \ell^{\infty}$. In order to conclude, we claim that $I(a)=\lambda_{a}=\lambda$. Indeed, first notice that for all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1}$ we have

$$
\left\|\sum_{n=0}^{k} x_{n} e^{(n)}-x\right\|_{\ell^{1}}=\sum_{n=k+1}^{+\infty}\left|x_{n}\right| \rightarrow 0 \quad(k \rightarrow+\infty) .
$$

Hence, by continuity and linearity of λ we get

$$
\begin{aligned}
\lambda(x) & =\lambda\left(\lim _{k \rightarrow+\infty} \sum_{n=0}^{k} x_{n} e^{(n)}\right)=\lim _{k \rightarrow+\infty} \lambda\left(\sum_{n=0}^{k} x_{n} e^{(n)}\right) \\
& =\lim _{k \rightarrow+\infty} \sum_{n=0}^{k} x_{n} \lambda\left(e^{(n)}\right)=\lim _{k \rightarrow+\infty} \sum_{n=0}^{k} a_{n} x_{n}=\lambda_{a}(x), \quad \forall x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1} .
\end{aligned}
$$

The statement follows.
(c) We define the linear functional $\lim : c \subset \ell^{\infty} \rightarrow \mathbb{R}$ given by

$$
\lim \left(\left(a_{n}\right)_{n \in \mathbb{N}}\right)=\lim _{n \rightarrow+\infty} a_{n} \quad \forall\left(a_{n}\right)_{n \in \mathbb{N}} \in c
$$

Moreover, we define sublinear functional $\lim \sup : \ell^{\infty} \rightarrow \mathbb{R}$ given by

$$
\limsup \left(\left(a_{n}\right)_{n \in \mathbb{N}}\right)=\limsup _{n \rightarrow+\infty} a_{n} \quad \forall\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} .
$$

Since it is straightforward that

$$
\lim \left(\left(a_{n}\right)_{n \in \mathbb{N}}\right) \leq \lim \sup \left(\left(a_{n}\right)_{n \in \mathbb{N}}\right) \quad \forall\left(a_{n}\right)_{n \in \mathbb{N}} \in c,
$$

by Hahn-Banach theorem there exists a linear functional $\lambda: \ell^{\infty} \rightarrow \mathbb{R}$ such that $\left.\lambda\right|_{c}=\lim$ and

$$
\lambda\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right) \leq \lim \sup \left(\left(a_{n}\right)_{n \in \mathbb{N}}\right) \quad \forall\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} .
$$

First, we notice that λ is continuous, because

$$
\lambda\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right) \leq \lim \sup \left(\left(a_{n}\right)_{n \in \mathbb{N}}\right) \leq\left\|\left(a_{n}\right)_{n \in \mathbb{N}}\right\|_{\ell^{\infty}} \quad \forall\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} .
$$

Moreover, by linearity, we have

$$
\lambda\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right)=-\lambda\left(-\left(a_{n}\right)_{n \in \mathbb{N}}\right) \geq-\limsup _{n \rightarrow+\infty}\left(-a_{n}\right)=\liminf _{n \rightarrow+\infty} a_{n} \quad \forall\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} .
$$

We are just left to show that λ cannot be represented as

$$
\lambda\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right)=\sum_{n=0}^{+\infty} x_{n} a_{n}, \quad \forall\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}
$$

for some sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1}$. By contradiction, assume that such a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ exists. Since $\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1}$, we have $\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0}$ and, since λ extends lim, we have

$$
\sum_{n=0}^{+\infty}\left|x_{n}\right|^{2}=\lambda\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=\lim \left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=0
$$

But this implies that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is the zero sequence and this would mean $\lambda=0$. This is a contradiction and the statement follows.

Exercise 2.2 Recall that a topological space X is called separable if it admits a countable and dense subset $S \subset X$.
(a) Let X be a Banach space. Show that if X^{*} is separable then X is separable.
(b) Prove that ℓ^{∞} is not a separable Banach space.
(c) Prove that ℓ^{1} is a separable Banach space.
(d) Prove that $\left(\ell^{\infty}\right)^{*} \not \equiv \ell^{1}$, i.e. show that there is no surjective isometry $I: \ell^{1} \rightarrow\left(\ell^{\infty}\right)^{*}$.

Prof. P. Hintz
Assistant: R. Caniato

Functional Analysis I
 Exercise Sheet 2

Solution.

(a) Let $\left(\lambda_{n}\right)_{n \in \mathbb{N}} \subset X^{*}$ be dense and countable in the unit sphere of X^{*}. Then, we let $S:=\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ be points such that $\lambda_{n}\left(x_{n}\right)>\frac{1}{2}$ and $\left\|x_{n}\right\| \leq 1$ for every $n \in \mathbb{N}$. We claim that $X=\overline{\operatorname{span}(S)}$. By contradiction, assume that $X \neq \overline{\operatorname{span}(S)}$ and pick any $x \in X \backslash \operatorname{span}(S)$ such that $\|x\|=1$. Define $\lambda: Y:=\operatorname{span}(S \cup\{x\})=$ $\operatorname{span}(S) \oplus \operatorname{span}(x) \rightarrow \mathbb{R}$ by

$$
\lambda(v+t x)=t \operatorname{dist}(x, \operatorname{span}(S)), \quad \forall v \in \operatorname{span}(S), \forall t \in \mathbb{R}
$$

Notice that $\|\lambda\|_{Y^{*}} \leq 1$. By Hahn-Banach theorem, we can extend λ to $\tilde{\lambda} \in X^{*}$ such that $\|\tilde{\lambda}\|_{X^{*}}=\|\lambda\|_{Y^{*}} \leq 1$ and $\left.\tilde{\lambda}\right|_{Y}=\lambda$. Since $\tilde{\lambda} \equiv 0$ on $\operatorname{span}(S)$, by continuity we have $\tilde{\lambda} \equiv 0$ on $\overline{\operatorname{span}(S)}$. By density, pick $\lambda_{\tilde{n}}$ such that $\left\|\lambda_{\tilde{n}}-\tilde{\lambda}\right\|_{X^{*}}<\frac{1}{4}$. We have

$$
\tilde{\lambda}\left(x_{\tilde{n}}\right) \geq\left|\lambda_{\tilde{n}}\left(x_{\tilde{n}}\right)\right|-\left|\lambda_{\tilde{n}}\left(x_{\tilde{n}}\right)-\tilde{\lambda}\left(x_{\tilde{n}}\right)\right| \geq \frac{1}{2}-\left\|\lambda_{\tilde{n}}-\tilde{\lambda}\right\|_{X^{*}}\left\|x_{\tilde{n}}\right\|>\frac{1}{2}-\frac{1}{4}=\frac{1}{4}>0
$$

and this contradicts $\tilde{\lambda}\left(x_{\tilde{n}}\right)=0$. The statement follows.
(b) Let $\mathscr{P}(\mathbb{N})$ denote the power set of \mathbb{N}. Recall that $\mathscr{P}(\mathbb{N})$ is uncountable. We define the family $\left\{e_{I}\right\}_{I \in \mathscr{P}(\mathbb{N})} \subset \ell^{\infty}$ by

$$
\left(e_{I}\right)_{n}:= \begin{cases}1 & \text { if } n \in I \\ 0 & \text { if } n \notin I .\end{cases}
$$

Notice that $\left\|e_{I}-e_{J}\right\|_{\ell \infty}=1$, for every $I, J \in \mathscr{P}(\mathbb{N})$ such that $I \neq J$. Hence,

$$
\mathscr{B}:=\left\{B\left(e_{I}, 1 / 2\right)\right\}_{I \in \mathscr{P}(\mathbb{N})}
$$

is an uncountably infinite collection of disjoint open balls in ℓ^{∞}. Now let S be any dense subset of ℓ^{∞}. By definition of dense subset, any ball in \mathscr{B} must contain at least one element of S. Thus, S must be uncountable. The statement follows.
(c) Let $c_{c}:=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}\right.$ s.t. $\exists N \in \mathbb{N}: a_{n}=0, \forall n \in \mathbb{N}$ with $\left.n \geq N\right\} \subset \ell^{1}$. We claim that $\overline{c_{c}}\|\cdot\|_{\ell^{1}}=\ell^{1}$. Indeed, let $a \in \ell^{1}$ and consider the sequence $\left(a^{(k)}\right)_{k \in \mathbb{N}} \subset c_{c}$ given by

$$
a_{n}^{(k)}:= \begin{cases}a_{n} & \text { if } n \leq k, \\ 0 & \text { if } n>k,\end{cases}
$$

for every $k, n \in \mathbb{N}$. We have

$$
\left\|a^{(k)}-a\right\|_{\ell^{1}}=\sum_{n=k+1}^{+\infty}\left|a_{n}\right| \rightarrow 0 \quad(k \rightarrow+\infty) .
$$

Our claim follows.
It's not hard to see that

$$
c_{c}^{\mathbb{Q}}:=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{Q} \text { s.t. } \exists N \in \mathbb{N}: a_{n}=0, \forall n \in \mathbb{N} \text { with } n \geq N\right\} \subset c_{c} \subset \ell^{1}
$$

is dense in c_{c}. We conclude that $c_{c}^{\mathbb{Q}}$ is dense in ℓ^{1}. Since $c_{c}^{\mathbb{Q}}$ is clearly countable, our statement follows.
(d) It's easy to see that if X, Y are isometrically isomorphic vector spaces, then X is separable if and only if Y is separable. By contradiction, assume that $\left(\ell^{\infty}\right)^{*} \cong \ell^{1}$. Since ℓ^{1} is separable (by point (c)), we conclude that $\left(\ell^{\infty}\right)^{*}$ is separable. Then by point (a) we get that ℓ^{∞} is separable. But this contradicts point (b) and our statement follows.

Exercise 2.3 Show that the subspaces

$$
\begin{aligned}
U & :=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{1} \text { s.t. } a_{2 n}=0, \forall n \in \mathbb{N}\right\} \\
V & :=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{1} \text { s.t. } a_{2 n-1}=n a_{2 n}, \forall n \in \mathbb{N} \backslash\{0\}\right\}
\end{aligned}
$$

are both closed in ℓ^{1} but $U \oplus V$ is not closed in ℓ^{1}.
Solution. First we claim that U is closed. Let $\left(a^{(k)}\right)_{k \in \mathbb{N}} \subset U$ be a sequence such that $a^{(k)} \rightarrow a$ as $k \rightarrow+\infty$ w.r.t $\|\cdot\|_{\ell^{1}}$ for some $a \in \ell^{1}$. Given any $n \in \mathbb{N}$, we have

$$
\left|a_{2 n}\right|=\left|a_{2 n}^{(k)}-a_{2 n}\right| \leq\left\|a^{(k)}-a\right\|_{\ell^{1}}, \quad \forall k \in \mathbb{N}
$$

By letting $k \rightarrow+\infty$ in the previous inequality we get $a_{2 n}=0$. By arbitrariness of $n \in \mathbb{N}$, we have $a \in U$ and we conclude that U is closed.

Analogously, we claim that V is closed. Indeed, let $\left(a^{(k)}\right)_{k \in \mathbb{N}} \subset V$ be a sequence such that $a^{(k)} \rightarrow a$ as $k \rightarrow+\infty$ w.r.t $\|\cdot\|_{\ell^{1}}$ for some $a \in \ell^{1}$. Given any $n \in \mathbb{N} \backslash\{0\}$, we have

$$
\begin{aligned}
\left|a_{2 n-1}-n a_{2 n}\right| & =\left|\left(a_{2 n-1}^{(k)}-n a_{2 n}^{(k)}\right)-\left(a_{2 n-1}-n a_{2 n}\right)\right| \\
& \leq\left|a_{2 n-1}^{(k)}-a_{2 n-1}\right|+n\left|a_{2 n}^{(k)}-a_{2 n}\right| \leq(1+n)\left\|a^{(k)}-a\right\|_{\ell^{1}}, \quad \forall k \in \mathbb{N} .
\end{aligned}
$$

By letting $k \rightarrow+\infty$ in the previous inequality we get $a_{2 n-1}=n a_{2 n}$. By arbitrariness of $n \in \mathbb{N} \backslash\{0\}$, we have $a \in V$ and we conclude that V is closed.

We claim that $c_{c} \subset U \oplus V$. Indeed, let $a \in c_{c}$ and let $u^{a} \in U$ be given by

$$
u_{m}^{a}:= \begin{cases}a_{m}-n a_{m+1} & \text { if } m=2 n-1 \text { for some } n \in \mathbb{N} \backslash\{0\} \\ 0 & \text { if } m \text { is even. }\end{cases}
$$

We have that $v^{a}:=a-u^{a}$ belongs to V, because

$$
v_{2 n-1}^{a}-n v_{2 n}^{a}=\left(a_{2 n-1}-u_{2 n-1}^{a}\right)-n\left(a_{2 n}-u_{2 n}^{a}\right)=\left(a_{2 n-1}-a_{2 n-1}+n a_{2 n}\right)-n a_{2 n}=0
$$

for every $n \in \mathbb{N} \backslash\{0\}$. Our claim follows.
We are ready to get our statement. By contradiction, assume that $U \oplus V$ is closed. By what we have proved so far (see also the solution of Exercise 2.2(c) for the proof of the first equality), we have

$$
\ell^{1}=\overline{c_{c}}\|\cdot\|_{\ell^{1}} \subset \overline{U \oplus V}=U \oplus V \subset \ell^{1},
$$

which implies $U \oplus V=\ell^{1}$. But this is false, because the sequence $x=\left(x_{m}\right)_{m \in \mathbb{N}}$ given by

$$
x_{m}:= \begin{cases}0 & \text { if } m \text { is odd } \\ \frac{1}{n^{2}} & \text { if } m=2 n\end{cases}
$$

belongs to ℓ^{1} and does not belong to $U \oplus V$. Indeed, by contradiction, assume that $x=u+v$ with $u \in U, v \in V$. Then we have

$$
v_{2 n}=x_{2 n}-u_{2 n}=\frac{1}{n^{2}}, \quad \forall n \in \mathbb{N} .
$$

But since $v \in V$ it holds that

$$
v_{2 n-1}=n v_{2 n}=\frac{1}{n}, \quad \forall n \in \mathbb{N} \backslash\{0\} .
$$

This implies $v \notin \ell^{1}$ and produces a contradiction. The statement follows.

Exercise 2.4 Let X be a Banach space over $\mathbb{K}=\mathbb{R}$ or \mathbb{C}.
(a) Prove that a linear functional $\lambda: X \rightarrow \mathbb{K}$ is continuous if and only if $\operatorname{ker}(\lambda)$ is a closed vector subspace of X.
(b) Prove that if $V \subset X$ is a closed vector subspace of X and $W \supset V$ is a vector subspace of X such that W / V is finite dimensional, then W is closed.

Solution.

(a) Assume that λ is continuous. Then, $\operatorname{ker}(\lambda):=\lambda^{-1}(0)$ is closed because it is the preimage of a closed set under a continuous map.
Conversely, assume that $\operatorname{ker}(\lambda)$ is closed. Then, $X / \operatorname{ker}(\lambda)$ is a finite dimensional (because it is isomorphic to $\operatorname{Im}(\lambda) \subset \mathbb{R}$) normed vector space and the quotient map $\pi: X \rightarrow X / \operatorname{ker}(\lambda)$ is continuous. Moreover, the map $\tilde{\lambda}: X / \operatorname{ker}(\lambda) \rightarrow \mathbb{K}$ given by $\tilde{\lambda}([x])=\lambda(x)$, for every $[x]=x+\operatorname{ker}(\lambda) \in X / \operatorname{ker}(\lambda)$ is well-defined and linear. Hence, $\tilde{\lambda}$ is continuous because it is a linear map between finite-dimensional vector spaces. Since $\lambda=\tilde{\lambda} \circ \pi$, we conclude that λ is continuous as composition of continuous maps.
(b) Since V is closed, then X / V is a normed vector space and the quotient map π : $X \rightarrow X / V$ is continuous. Notice that $W=\pi^{-1}(W / V)$. Since $W / V \subset X / V$ is a finite-dimensional vector subspace, we have that W / V is a closed subset of X / V. Hence, W is closed because it is the preimage of a closed set under a continuous map.

