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Exercise 2.1 Let

c0 :=
{
(an)n∈N ∈ ℓ∞ s.t. lim

n→+∞
an = 0

}
⊂ ℓ∞.

(a) Prove that (c0)∗ ∼= ℓ1, i.e. show that there exists a surjective isometry I : ℓ1 → (c0)∗.

(b) Prove that (ℓ1)∗ ∼= ℓ∞, i.e. show that there exists a surjective isometry Ĩ : ℓ∞ → (ℓ1)∗.

(c) Prove that there exists a continuous and linear functional λ : ℓ∞ → R such that

lim inf
n→+∞

an ≤ λ((an)n∈N) ≤ lim sup
n→+∞

an, ∀ (an)n∈N ∈ ℓ∞.

Show that such functional is not of the form

λ((an)n∈N) =
+∞∑
n=0

xnan, ∀ (an)n∈N ∈ ℓ∞

for some sequence (xn)n∈N ∈ ℓ1.

Solution.

(a) Given any sequence a = (an)n∈N ∈ ℓ1, we let λa : c0 → R be given by

λa(x) :=
+∞∑
n=0

anxn, ∀ x = (xn)n∈N ∈ c0.

Clearly, λa is R-linear. We notice that

|λa(x)| ≤
+∞∑
n=0

|an||xn| ≤ ∥a∥ℓ1∥x∥ℓ∞ < +∞, ∀ x = (xn)n∈N ∈ c0.

This immediately implies that λa ∈ (c0)∗ is well-defined and ∥λa∥(c0)∗ ≤ ∥a∥ℓ1 .
Consider the sequence (x(k))k∈N ⊂ c0 given by

x(k)
n :=

sgn(an) if n ≤ k,

0 if n > k,
(1)

for every n, k ∈ N. Notice that ∥x(k)∥ℓ∞ = 1 for every k ∈ N and

λa(x(k)) =
k∑

n=0
|an| → ∥a∥ℓ1 (k → +∞).
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Hence, we conclude ∥λa∥(c0)∗ = ∥a∥ℓ1 .

We define the linear map I : ℓ1 → (c0)∗ given by I(a) := λa, for every a ∈ ℓ1. From
what we have proved so far, it follows that I is a linear isometry. In order to conclude,
we just need to show that I is surjective. Indeed, pick any λ ∈ (c0)∗ and define
a = (an)n∈N by an := λ(e(n)) with

e
(n)
k =

1 if k = n,

0 if k ̸= n,

for every n, k ∈ N. Notice that, for every given k ∈ N, we have
k∑

n=0
|an| = λ(x(k)) ≤ ∥λ∥(c0)∗ ,

where (x(k))k∈N ⊂ c0 is defined as in (1). By letting k → +∞ in the previous
inequality we get

∥a∥ℓ1 ≤ ∥λ∥(c0)∗ < +∞,

i.e. a ∈ ℓ1. In order to conclude, we claim that I(a) = λa = λ. Indeed, first notice
that for all x = (xn)n∈N ∈ c0 we have∥∥∥∥∥

k∑
n=0

xne(n) − x

∥∥∥∥∥
ℓ∞

= sup
n≥k

|xn| → 0 (k → +∞).

Hence, by continuity and linearity of λ we get

λ(x) = λ

(
lim

k→+∞

k∑
n=0

xne(n)
)

= lim
k→+∞

λ

(
k∑

n=0
xne(n)

)

= lim
k→+∞

k∑
n=0

xnλ(e(n)) = lim
k→+∞

k∑
n=0

anxn = λa(x), ∀ x = (xn)n∈N ∈ c0.

The statement follows.

(b) Given any sequence a = (an)n∈N ∈ ℓ∞, we let λa : ℓ1 → R be given by

λa(x) :=
+∞∑
n=0

anxn, ∀ x = (xn)n∈N ∈ ℓ1.

Clearly, λa is R-linear. We notice that

|λa(x)| ≤
+∞∑
n=0

|an||xn| ≤ ∥a∥ℓ∞∥x∥ℓ1 < +∞, ∀ x = (xn)n∈N ∈ ℓ1.
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This immediately implies that λa ∈ (ℓ1)∗ is well-defined and ∥λa∥(ℓ1)∗ ≤ ∥a∥ℓ∞ .
Consider the sequence (e(k))k∈N ⊂ ℓ1 given as in point (a). Notice that ∥e(k)∥ℓ1 = 1
for every k ∈ N and

∥λa∥(ℓ1)∗ ≥ sup
k∈N

λa(x(k)) = sup
k∈N

|ak| = ∥a∥ℓ∞ .

Hence, we conclude ∥λa∥(ℓ1)∗ = ∥a∥ℓ∞ .

We define the linear map Ĩ : ℓ∞ → (ℓ1)∗ given by Ĩ(a) := λa, for every a ∈ ℓ∞.
From what we have proved so far, it follows that Ĩ is a linear isometry. In order to
conclude, we just need to show that Ĩ is surjective. Indeed, pick any λ ∈ (ℓ1)∗ and
define a = (an)n∈N by an := λ(e(n)) with (e(n))n∈N ⊂ ℓ1 given as in point (a). Notice
that, for every given n ∈ N, we have

|an| = |λ(e(n))| ≤ ∥λ∥(ℓ1)∗ ,

By taking the supremum over n ∈ N in the previous inequality we get

∥a∥ℓ∞ ≤ ∥λ∥(ℓ1)∗ < +∞,

i.e. a ∈ ℓ∞. In order to conclude, we claim that I(a) = λa = λ. Indeed, first notice
that for all x = (xn)n∈N ∈ ℓ1 we have∥∥∥∥∥

k∑
n=0

xne(n) − x

∥∥∥∥∥
ℓ1

=
+∞∑

n=k+1
|xn| → 0 (k → +∞).

Hence, by continuity and linearity of λ we get

λ(x) = λ

(
lim

k→+∞

k∑
n=0

xne(n)
)

= lim
k→+∞

λ

(
k∑

n=0
xne(n)

)

= lim
k→+∞

k∑
n=0

xnλ(e(n)) = lim
k→+∞

k∑
n=0

anxn = λa(x), ∀ x = (xn)n∈N ∈ ℓ1.

The statement follows.

(c) We define the linear functional lim : c ⊂ ℓ∞ → R given by

lim((an)n∈N) = lim
n→+∞

an ∀ (an)n∈N ∈ c.

Moreover, we define sublinear functional lim sup : ℓ∞ → R given by

lim sup((an)n∈N) = lim sup
n→+∞

an ∀ (an)n∈N ∈ ℓ∞.
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Since it is straightforward that

lim((an)n∈N) ≤ lim sup((an)n∈N) ∀ (an)n∈N ∈ c,

by Hahn-Banach theorem there exists a linear functional λ : ℓ∞ → R such that
λ|c = lim and

λ((an)n∈N) ≤ lim sup((an)n∈N) ∀ (an)n∈N ∈ ℓ∞.

First, we notice that λ is continuous, because

λ((an)n∈N) ≤ lim sup((an)n∈N) ≤ ∥(an)n∈N∥ℓ∞ ∀ (an)n∈N ∈ ℓ∞.

Moreover, by linearity, we have

λ((an)n∈N) = −λ(−(an)n∈N) ≥ − lim sup
n→+∞

(−an) = lim inf
n→+∞

an ∀ (an)n∈N ∈ ℓ∞.

We are just left to show that λ cannot be represented as

λ((an)n∈N) =
+∞∑
n=0

xnan, ∀ (an)n∈N ∈ ℓ∞

for some sequence (xn)n∈N ∈ ℓ1. By contradiction, assume that such a sequence
(xn)n∈N exists. Since (xn)n∈N ∈ ℓ1, we have (xn)n∈N ∈ c0 and, since λ extends lim,
we have

+∞∑
n=0

|xn|2 = λ((xn)n∈N) = lim((xn)n∈N) = 0.

But this implies that (xn)n∈N is the zero sequence and this would mean λ = 0. This
is a contradiction and the statement follows.

Exercise 2.2 Recall that a topological space X is called separable if it admits a countable
and dense subset S ⊂ X.

(a) Let X be a Banach space. Show that if X∗ is separable then X is separable.

(b) Prove that ℓ∞ is not a separable Banach space.

(c) Prove that ℓ1 is a separable Banach space.

(d) Prove that (ℓ∞)∗ ≇ ℓ1, i.e. show that there is no surjective isometry I : ℓ1 → (ℓ∞)∗.
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Solution.

(a) Let (λn)n∈N ⊂ X∗ be dense and countable in the unit sphere of X∗. Then, we let
S := (xn)n∈N ⊂ X be points such that λn(xn) > 1

2 and ∥xn∥ ≤ 1 for every n ∈ N.
We claim that X = span(S). By contradiction, assume that X ≠ span(S) and
pick any x ∈ X ∖ span(S) such that ∥x∥ = 1. Define λ : Y := span(S ∪ {x}) =
span(S) ⊕ span(x) → R by

λ(v + tx) = t dist(x, span(S)), ∀ v ∈ span(S), ∀ t ∈ R.

Notice that ∥λ∥Y ∗ ≤ 1. By Hahn-Banach theorem, we can extend λ to λ̃ ∈ X∗ such
that ∥λ̃∥X∗ = ∥λ∥Y ∗ ≤ 1 and λ̃|Y = λ. Since λ̃ ≡ 0 on span(S), by continuity we
have λ̃ ≡ 0 on span(S). By density, pick λñ such that ∥λñ − λ̃∥X∗ < 1

4 . We have

λ̃(xñ) ≥ |λñ(xñ)| − |λñ(xñ) − λ̃(xñ)| ≥ 1
2 − ∥λñ − λ̃∥X∗∥xñ∥ >

1
2 − 1

4 = 1
4 > 0

and this contradicts λ̃(xñ) = 0. The statement follows.

(b) Let P(N) denote the power set of N. Recall that P(N) is uncountable. We define
the family {eI}I∈P(N) ⊂ ℓ∞ by

(eI)n :=

1 if n ∈ I,

0 if n /∈ I.

Notice that ∥eI − eJ∥ℓ∞ = 1, for every I, J ∈ P(N) such that I ̸= J . Hence,

B := {B(eI , 1/2)}I∈P(N)

is an uncountably infinite collection of disjoint open balls in ℓ∞. Now let S be any
dense subset of ℓ∞. By definition of dense subset, any ball in B must contain at
least one element of S. Thus, S must be uncountable. The statement follows.

(c) Let cc := {(an)n∈N ⊂ R s.t. ∃ N ∈ N : an = 0, ∀ n ∈ N with n ≥ N} ⊂ ℓ1. We claim
that cc

∥ · ∥ℓ1 = ℓ1. Indeed, let a ∈ ℓ1 and consider the sequence (a(k))k∈N ⊂ cc given by

a(k)
n :=

an if n ≤ k,

0 if n > k,

for every k, n ∈ N. We have

∥a(k) − a∥ℓ1 =
+∞∑

n=k+1
|an| → 0 (k → +∞).
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Our claim follows.

It’s not hard to see that

cQc := {(an)n∈N ⊂ Q s.t. ∃ N ∈ N : an = 0, ∀ n ∈ N with n ≥ N} ⊂ cc ⊂ ℓ1

is dense in cc. We conclude that cQc is dense in ℓ1. Since cQc is clearly countable, our
statement follows.

(d) It’s easy to see that if X, Y are isometrically isomorphic vector spaces, then X is
separable if and only if Y is separable. By contradiction, assume that (ℓ∞)∗ ∼= ℓ1.
Since ℓ1 is separable (by point (c)), we conclude that (ℓ∞)∗ is separable. Then
by point (a) we get that ℓ∞ is separable. But this contradicts point (b) and our
statement follows.

Exercise 2.3 Show that the subspaces

U := {(an)n∈N ∈ ℓ1 s.t. a2n = 0, ∀ n ∈ N}
V := {(an)n∈N ∈ ℓ1 s.t. a2n−1 = na2n, ∀ n ∈ N∖ {0}}

are both closed in ℓ1 but U ⊕ V is not closed in ℓ1.

Solution. First we claim that U is closed. Let (a(k))k∈N ⊂ U be a sequence such that
a(k) → a as k → +∞ w.r.t ∥ · ∥ℓ1 for some a ∈ ℓ1. Given any n ∈ N, we have

|a2n| = |a(k)
2n − a2n| ≤ ∥a(k) − a∥ℓ1 , ∀ k ∈ N.

By letting k → +∞ in the previous inequality we get a2n = 0. By arbitrariness of n ∈ N,
we have a ∈ U and we conclude that U is closed.

Analogously, we claim that V is closed. Indeed, let (a(k))k∈N ⊂ V be a sequence such
that a(k) → a as k → +∞ w.r.t ∥ · ∥ℓ1 for some a ∈ ℓ1. Given any n ∈ N∖ {0}, we have

|a2n−1 − na2n| = |(a(k)
2n−1 − na

(k)
2n ) − (a2n−1 − na2n)|

≤ |a(k)
2n−1 − a2n−1| + n|a(k)

2n − a2n| ≤ (1 + n)∥a(k) − a∥ℓ1 , ∀ k ∈ N.

By letting k → +∞ in the previous inequality we get a2n−1 = na2n. By arbitrariness of
n ∈ N∖ {0}, we have a ∈ V and we conclude that V is closed.
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We claim that cc ⊂ U ⊕ V . Indeed, let a ∈ cc and let ua ∈ U be given by

ua
m :=

am − nam+1 if m = 2n − 1 for some n ∈ N∖ {0},

0 if m is even.

We have that va := a − ua belongs to V , because

va
2n−1 − nva

2n = (a2n−1 − ua
2n−1) − n(a2n − ua

2n) = (a2n−1 − a2n−1 + na2n) − na2n = 0

for every n ∈ N∖ {0}. Our claim follows.

We are ready to get our statement. By contradiction, assume that U ⊕ V is closed. By
what we have proved so far (see also the solution of Exercise 2.2(c) for the proof of the
first equality), we have

ℓ1 = cc
∥ · ∥ℓ1 ⊂ U ⊕ V = U ⊕ V ⊂ ℓ1,

which implies U ⊕ V = ℓ1. But this is false, because the sequence x = (xm)m∈N given by

xm :=


0 if m is odd,
1
n2 if m = 2n

belongs to ℓ1 and does not belong to U ⊕ V . Indeed, by contradiction, assume that
x = u + v with u ∈ U, v ∈ V . Then we have

v2n = x2n − u2n = 1
n2 , ∀ n ∈ N.

But since v ∈ V it holds that

v2n−1 = nv2n = 1
n

, ∀ n ∈ N∖ {0}.

This implies v /∈ ℓ1 and produces a contradiction. The statement follows.

Exercise 2.4 Let X be a Banach space over K = R or C.

(a) Prove that a linear functional λ : X → K is continuous if and only if ker(λ) is a
closed vector subspace of X.

(b) Prove that if V ⊂ X is a closed vector subspace of X and W ⊃ V is a vector subspace
of X such that W/V is finite dimensional, then W is closed.
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Solution.

(a) Assume that λ is continuous. Then, ker(λ) := λ−1(0) is closed because it is the
preimage of a closed set under a continuous map.

Conversely, assume that ker(λ) is closed. Then, X/ ker(λ) is a finite dimensional
(because it is isomorphic to Im(λ) ⊂ R) normed vector space and the quotient map
π : X → X/ ker(λ) is continuous. Moreover, the map λ̃ : X/ ker(λ) → K given by
λ̃([x]) = λ(x), for every [x] = x+ker(λ) ∈ X/ ker(λ) is well-defined and linear. Hence,
λ̃ is continuous because it is a linear map between finite-dimensional vector spaces.
Since λ = λ̃ ◦ π, we conclude that λ is continuous as composition of continuous maps.

(b) Since V is closed, then X/V is a normed vector space and the quotient map π :
X → X/V is continuous. Notice that W = π−1(W/V ). Since W/V ⊂ X/V is a
finite-dimensional vector subspace, we have that W/V is a closed subset of X/V .
Hence, W is closed because it is the preimage of a closed set under a continuous
map.
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