Exercise 3.1 Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space and assume that $U \subset X$ is a closed vector subspace of X. We say that U is topologically complemented in X if there exist a vector subspace $V \subset X$ such that the linear isomorphism $I: U \times V \rightarrow X$ given by $I(u, v):=u+v$ for very $(u, v) \in U \times V$ is a continuous isomorphism of normed vector spaces with continuous inverse. Recall that the natural norm on $U \times V$ is given by $\|(u, v)\|_{U \times V}:=\|u\|_{X}+\|v\|_{X}$.
(a) Prove that if $\operatorname{dim}(U)<+\infty$, then U is topologically complemented.
(b) Prove that if $\operatorname{dim}(X / U)<+\infty$, then U is topologically complemented.

Exercise 3.2 By using the Baire category theorem, prove the following statements.
(a) Let $f \in C^{0}([0,+\infty))$ be such that

$$
\lim _{n \rightarrow+\infty} f(n t)=0, \quad \forall t \in[0,+\infty)
$$

Prove that

$$
\lim _{t \rightarrow+\infty} f(t)=0
$$

(b) Let X be a Banach space. Show that any algebraic basis of X is either finite or uncountable.
(c) Let (X, d) be a complete metric space and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of continuous and real-valued functions on X. Assume that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to some function f, i.e.

$$
\lim _{n \rightarrow+\infty} f_{n}(x)=f(x), \quad \forall x \in X
$$

Prove that the set of the continuity points of f, given by

$$
C=\{x \in X \text { s.t. } f \text { is continuous at } x\},
$$

is residual and dense in X.

Exercise 3.3 Let $\Omega \subset \mathbb{R}^{n}$ be a bounded and open subset of \mathbb{R}^{n} and let $T \in L\left(L^{2}(\Omega)\right)$. Assume that $T(u) \in C^{0}(\bar{\Omega})$ whenever $u \in C^{0}(\bar{\Omega})$. Prove that T restricts to a bounded linear operator from $C^{0}(\bar{\Omega})$ onto itself.

[^0]Exercise 3.4 Let

$$
X:=\left\{f \in C^{0}([0,2 \pi]) \text { s.t. } f(0)=f(2 \pi)\right\} \subset C^{0}([0,2 \pi])
$$

equipped with the usual sup norm.
(a) Show that X is Banach space.
(b) For every $k \in \mathbb{N}$, let $s_{k}: X \rightarrow \mathbb{R}$ be given by

$$
s_{k}(f):=\frac{1}{2 \pi} \sum_{n=-k}^{n=k} \int_{0}^{2 \pi} f(t) e^{-i n t} d t, \quad \forall f \in X
$$

Prove that s_{k} is a bounded linear functional on X for every $k \in \mathbb{N}$.
(c) Show that

$$
\sup _{k \in \mathbb{N}}\left\|s_{k}\right\|_{L(X, \mathbb{R})}=+\infty
$$

Hint. Notice that

$$
\sum_{n=-k}^{n=k} e^{i n t}=\frac{e^{i(k+1) t}-e^{i k t}}{e^{i t}-1}=\frac{\sin \left(\left(k+\frac{1}{2}\right) t\right)}{\sin \left(\frac{t}{2}\right)}, \quad \forall t \in(0,2 \pi), \forall k \in \mathbb{N} .
$$

(d) Prove that for every $t \in[0,2 \pi]$ there exists a continuous 2π-periodic function whose Fourier series does not converge at t.

Hint. Use the following equivalent formulation of the Banach-Steinhaus theorem, called condensation of singularities: if $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ are Banach spaces and the family $\left(A_{k}\right)_{k \in \mathbb{N}} \subset L(X, Y)$ is such that

$$
\sup _{k \in \mathbb{N}}\left\|A_{k}\right\|_{L(X, Y)}=+\infty
$$

then there exists $x \in X$ such that

$$
\sup _{k \in \mathbb{N}}\left\|A_{k}(x)\right\|_{Y}=+\infty
$$

[^0]: Last modified: 7 October 2022

