Exercise 3.1 Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space and assume that $U \subset X$ is a closed vector subspace of X. We say that U is topologically complemented in X if there exist a vector subspace $V \subset X$ such that the linear isomorphism $I: U \times V \rightarrow X$ given by $I(u, v):=u+v$ for very $(u, v) \in U \times V$ is a continuous isomorphism of normed vector spaces with continuous inverse. Recall that the natural norm on $U \times V$ is given by $\|(u, v)\|_{U \times V}:=\|u\|_{X}+\|v\|_{X}$.
(a) Prove that if $\operatorname{dim}(U)<+\infty$, then U is topologically complemented.
(b) Prove that if $\operatorname{dim}(X / U)<+\infty$, then U is topologically complemented.

Solution. First, we claim that U is topologically complemented if and only if there exists $P \in L(X)$ such that $P^{2}=P$ and $P(X)=U$.

Suppose $U \subset X$ is topologically complemented by $V \subset X$. Then, $I: U \times V \rightarrow X$ with $(u, v) \mapsto u+v$ is an continuous isomorphism with continuous inverse. We define

$$
\begin{aligned}
P_{1}: U \times V & \rightarrow U \times V, & P:=I \circ P_{1} \circ I^{-1}: X \rightarrow X . \\
(u, v) & \mapsto(u, 0) &
\end{aligned}
$$

P_{1} is linear, bounded since $\left\|P_{1}(u, v)\right\|_{U \times V}=\|u\|_{U} \leq\|(u, v)\|_{U \times V}$ and hence continuous. As composition of linear continuous maps, P is linear and continuous. Moreover,

$$
\begin{aligned}
& P \circ P=\left(I \circ P_{1} \circ I^{-1}\right) \circ\left(I \circ P_{1} \circ I^{-1}\right)=I \circ P_{1} \circ P_{1} \circ I^{-1}=I \circ P_{1} \circ I^{-1}=P, \\
& P(X)=I(U \times\{0\})=U .
\end{aligned}
$$

Conversely, suppose $U \subset X$ allows a continuous linear map $P: X \rightarrow X$ with $P \circ P=P$ and $P(X)=U$. Let $V:=\operatorname{ker}(P)$. Then

$$
\begin{equation*}
P \circ(1-P)=P-P=0 \quad \Rightarrow(1-P)(X) \subseteq \operatorname{ker}(P)=V \tag{1}
\end{equation*}
$$

In fact, $(1-P)(X)=V$ since given $v \in V$ we have $v=(1-P) v$. Analogously,

$$
\begin{equation*}
(1-P) \circ P=P-P=0 \quad \Rightarrow U=P(X) \subseteq \operatorname{ker}(1-P) \tag{2}
\end{equation*}
$$

In fact, $U=\operatorname{ker}(1-P)$ since $x-P x=0$ implies $x=P x \in U$. We now claim that the map

$$
I: U \times V \rightarrow X, \quad I(u, v)=u+v
$$

is continuous and has a continuous inverse. Continuity of I follows directly from

$$
\|I(u, v)\|_{X}=\|u+v\|_{X} \leq\|u\|_{X}+\|v\|_{X}=\|(u, v)\|_{U \times V} .
$$

By the assumptions on P, especially (1), the map

$$
\Phi: X \rightarrow U \times V, \quad \Phi(x)=(P x,(1-P) x)
$$

is well-defined and continuous. Since $P u=u$ for all $u \in U$ by (2) we have

$$
\begin{aligned}
(\Phi \circ I)(u, v) & =\Phi(u+v)=(P u+P v, u-P u+v-P v)=(u, v), \\
(I \circ \Phi)(x) & =I(P x,(1-P) x)=P x+(1-P) x=x,
\end{aligned}
$$

so Φ is inverse to I. Consequently, U is topologically complemented.
(a) It is sufficient to construct a projection map P as above. Let e_{1}, \ldots, e_{n} be a basis of the given finite-dimensional subspace $U \subset X$ let $f_{1}, \ldots, f_{n} \in L(U, \mathbb{R})$ be the associated dual basis, uniquely defined by the conditions

$$
f_{i}\left(e_{j}\right)=\delta_{i j}:= \begin{cases}1 & \text { if } i=j \\ 0 & \text { else }\end{cases}
$$

From the Hahn-Banach Theorem it follows that there exist extensions $F_{i} \in L(X ; \mathbb{R})$ with $\left\|F_{i}\right\|=\left\|f_{i}\right\|$. We define

$$
P: X \rightarrow X, \quad P(x)=\sum_{i=1}^{n} F_{i}(x) e_{i} .
$$

Then P is linear and continuous, since

$$
\|P x\|_{X} \leq\left(\sum_{i=1}^{n}\left\|F_{i}\right\|\left\|e_{i}\right\|_{X}\right)\|x\|_{X} .
$$

By construction, $P(X) \subset \operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}=U$. By definition of f_{i} and F_{i} we have $P\left(e_{i}\right)=e_{i}$ for every $i \in\{1, \ldots, n\}$. Therefore, $P(X)=U$. Finally, for every $x \in X$,

$$
(P \circ P)(x)=P\left(\sum_{i=1}^{n} F_{i}(x) e_{i}\right)=\sum_{i=1}^{n} F_{i}(x) P\left(e_{i}\right)=\sum_{i=1}^{n} F_{i}(x) e_{i}=P(x) .
$$

It follows from Exercise 4.3 that U is topologically complemented.
(b) Denote by $\pi: X \rightarrow X / U, \pi(x)=[x]$ the canonical quotient map. Since $\operatorname{dim}(X / U)=$ $m<\infty$ we can choose a basis $\left[e_{1}\right], \ldots,\left[e_{m}\right]$ for X / U and let as above $f_{1}, \ldots f_{m} \in$ $L(X / U, \mathbb{R})$ be the associated dual basis. Set $F_{i}:=f_{i} \circ \pi: X \rightarrow \mathbb{R}$ and define

$$
P: X \rightarrow X, \quad P(x)=\sum_{i=1}^{n} F_{i}(x) e_{i} .
$$

Since $F_{i}\left(e_{j}\right)=f_{i}\left(\pi\left(e_{j}\right)\right)=f_{i}\left(\left[e_{j}\right]\right)=\delta_{i j}$ we have $P \circ P=P$ as above. Since $\left[e_{1}\right], \ldots,\left[e_{m}\right]$ is a basis for X / U, the representatives e_{1}, \ldots, e_{m} must be linearly independent in X. Therefore, $P(x)=0$ implies $F_{i}(x)=f_{i}([x])=0$ for every $i \in\{1, \ldots, n\}$ which in turn implies $[x]=[0]$ or $x \in U$. Conversely, $x \in U$ implies $\pi(x)=[0]$ and $P(x)=0$. Thus we have shown $\operatorname{ker}(P)=U$. As in Exercise 4.3, we conclude that $(1-P)$ is a continuous projection onto U which implies that U is topologically complemented.

Exercise 3.2 By using the Baire category theorem, prove the following statements.
(a) Let $f \in C^{0}([0,+\infty))$ be such that

$$
\lim _{n \rightarrow+\infty} f(n t)=0, \quad \forall t \in[0,+\infty) .
$$

Prove that

$$
\lim _{t \rightarrow+\infty} f(t)=0 .
$$

(b) Let X be a Banach space. Show that any algebraic basis of X is either finite or uncountable.
(c) Let (X, d) be a complete metric space and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of continuous and real-valued functions on X. Assume that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to some function f, i.e.

$$
\lim _{n \rightarrow+\infty} f_{n}(x)=f(x), \quad \forall x \in X
$$

Prove that the set of the continuity points of f, given by

$$
C=\{x \in X \text { s.t. } f \text { is continuous at } x\},
$$

is residual and dense in X.

Solution.

(a) Define $f_{n}(t)=|f(n t)|$ for every $n \in \mathbb{N}$. Let $\varepsilon>0$ and let

$$
A_{N}:=\bigcap_{n=N}^{\infty}\left\{t \in[0, \infty) \mid f_{n}(t) \leq \varepsilon\right\} .
$$

Since f_{n} is continuous, the preimage $f_{n}^{-1}([0, \varepsilon])=\left\{t \in[0, \infty) \mid f_{n}(t) \leq \varepsilon\right\}$ is closed for all $n \in \mathbb{N}$. Thus, the set A_{N} is closed as intersection of closed sets. By assumption,

$$
\forall t \in[0, \infty) \quad \exists N_{t} \in \mathbb{N} \quad \forall n \geq N_{t}: \quad f_{n}(t) \leq \varepsilon
$$

which implies

$$
[0, \infty)=\bigcup_{N=1}^{\infty} A_{N} .
$$

Baire's Lemma applied to the complete metric space $([0, \infty),|\cdot|)$ implies that there exists $N_{0} \in \mathbb{N}$ such that $A_{N_{0}}$ has non-empty interior, i. e. there exist $0 \leq a<b$ such that $(a, b) \subset A_{N_{0}}$. This implies

$$
\begin{aligned}
& \forall n \geq N_{0} \quad \forall t \in(a, b): \quad f_{n}(t) \leq \varepsilon \\
& \Leftrightarrow \quad \forall n \geq N_{0} \quad \forall t \in(n a, n b):|f(t)| \leq \varepsilon .
\end{aligned}
$$

If $n>\frac{a}{b-a}$, then $(n+1) a<n b$. For the intervals $J_{a, b}(n):=(n a, n b)$ this means that $J_{a, b}(n) \cap J_{a, b}(n+1) \neq \emptyset$. Let $N_{1}>\max \left\{N_{0}, \frac{a}{b-a}\right\}$. Then, in particular,

$$
\forall t>N_{1} a: \quad|f(t)| \leq \varepsilon
$$

This proves $\lim _{t \rightarrow \infty} f(t)=0$ since $\varepsilon>0$ was arbitrary.
(b) Assume by contradiction that X has a countably infinite algebraic basis $\left\{e_{1}, e_{2}, \ldots\right\}$. For $n \in \mathbb{N}$ we define the linear subspaces $A_{n}=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\} \subset X$.
As finite dimensional subspace, A_{n} is closed. Suppose that A_{n} has non-empty interior. Then there exist $x \in A_{n}$ and $\varepsilon>0$ such that $B_{\varepsilon}(x) \subset A_{n}$. Since A_{n} is a linear subspace, we may subtract $x \in A_{n}$ from the elements in $B_{\varepsilon}(x)$ to obtain $B_{\varepsilon}(0) \subset A_{n}$. For the same reason,

$$
A_{n} \supset\left\{\lambda y \mid \lambda>0, y \in B_{\varepsilon}(x)\right\}=X
$$

This implies $\operatorname{dim} X \leq n$ which contradicts our assumption that the algebraic basis of X is infinite. Thus A_{n} must have empty interior and thus, being also closed, is nowhere dense. By assumption,

$$
X=\bigcup_{n \in \mathbb{N}} A_{n}
$$

which implies that X is meager. Since X is complete, this contradicts Baire's Lemma.
(c) First we notice that

$$
C=\left\{x \in X \text { s.t. } \operatorname{osc}_{x}(f):=\lim _{r \rightarrow 0^{+}}\left(\sup _{y \in B_{r}(x)} f(y)-\inf _{y \in B_{r}(x)} f(y)\right)=0\right\}
$$

By letting

$$
D_{\varepsilon}:=\left\{x \in X \quad \text { s.t. } \operatorname{osc}_{x}(f) \geq \varepsilon\right\} \quad \forall \varepsilon>0,
$$

we can write

$$
C=\bigcap_{\substack{j \in \mathbb{N} \\ j \geq 1}} D_{1 / j}^{c}
$$

By the Baire category theorem, in order to conclude it is sufficient to show that D_{ε}^{c} is open and dense for every $\varepsilon>0$.
Openness. We want to show that D_{ε} is closed for every $\varepsilon>0$. Fix any $\varepsilon>0$. We notice that D_{ε} is a super lever set of the function $X \ni x \mapsto \operatorname{osc}_{x}(f)$. Hence, we just need to show that $X \ni x \mapsto \operatorname{osc}_{x}(f)$ is upper semicontinuous. First, we show that the function $g: X \rightarrow \mathbb{R}$ given by

$$
g(x):=\lim _{r \rightarrow 0^{+}} \sup _{y \in B_{r}(x)} f(y) \quad \forall x \in X
$$

is upper semicontinuous. Fix any $x \in X$. By definition of g, for every $\eta>0$ there exists $\delta>0$ such that $f(y) \leq g(x)+\eta$, for every $y \in B_{\delta}(x)$. Therefore, for every $y \in B_{\delta / 2}(x)$ we have

$$
g(y)=\lim _{r \rightarrow 0^{+}} \sup _{z \in B_{r}(y)} f(z) \leq \sup _{z \in B_{\delta / 2}(y)} f(z) \leq g(x)+\eta
$$

since $B_{\delta / 2}(y) \subset B_{\delta}(x)$. By taking the limit superior as $y \rightarrow x$ in the previous inequality we get

$$
\limsup _{y \rightarrow x} g(y) \leq g(x)+\eta
$$

and by arbitrariness of $\eta>$) we get that g is upper semicontinuous. Now we consider the function $h: X \rightarrow \mathbb{R}$ given by

$$
h(x):=-\lim _{r \rightarrow 0^{+}} \inf _{y \in B_{r}(x)} f(y)=\lim _{r \rightarrow 0^{+}} \sup _{y \in B_{r}(x)}\{-f(y)\} \quad \forall x \in X
$$

and we notice that applying exactly the same argument with $-f$ instead of f we get that h is upper semicontinuous as well. Since $x \mapsto \operatorname{osc}_{x}(f)=g+h$, we get that $x \mapsto \operatorname{osc}_{x}(f)$ is upper semicontinuous and we are done.

Density. Fix any $\varepsilon>0$. For every $k \in \mathbb{N}$ we define

$$
E_{k}:=\bigcap_{i, j \geq k}\left\{x \in X \text { s.t. }\left|f_{i}(x)-f_{j}(x)\right| \leq \varepsilon / 4\right\} .
$$

Notice that E_{k} is closed as intersection of closed sets (recall that each f_{n} is continuous) for every $k \in \mathbb{N}$. Moreover,

$$
X=\bigcup_{k \in \mathbb{N}} E_{k}
$$

because the functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ pointwise converges to f. As a result, by the Baire category theorem, for every open set $U \subset X$ there exists $k \in \mathbb{N}$ such that $E_{k}^{\circ} \cap U \neq \emptyset$. In particular, there exists an open set $V \subset E_{k} \cap U$. Hence, by definition of E_{k}, we have $\left|f_{i}(x)-f_{j}(x)\right| \leq \varepsilon / 4$ for every $x \in V$ and $i, j \geq k$. Taking $i=k$ and letting $j \rightarrow+\infty$ we get $\left|f_{k}(x)-f(x)\right| \leq \varepsilon / 4$, for every $x \in V$. Since f_{k} is continuous, by taking V possibily smaller we can assume that $\left|f_{k}(x)-f_{k}(y)\right| \leq \varepsilon / 4$, for every $x, y \in V$. In conclusion, for every $x, y \in V$ we get

$$
|f(x)-f(y)| \leq\left|f(x)-f_{k}(x)\right|+\left|f_{k}(x)-f_{k}(y)\right|+\left|f_{k}(y)-f(y)\right| \leq \frac{3 \varepsilon}{4}
$$

which implies $\operatorname{osc}_{x}(f) \leq 3 \varepsilon / 4<\varepsilon$ for every $x \in V$. Thus, $V \subset D_{\varepsilon}^{c}$ and $U \cap D_{\varepsilon}^{x} \neq \emptyset$. By arbitrariness of the open set $U \subset X$, our claim follows.

Exercise 3.3 Let $\Omega \subset \mathbb{R}^{n}$ be a bounded and open subset of \mathbb{R}^{n} and let $T \in L\left(L^{2}(\Omega)\right)$. Assume that $T(u) \in C^{0}(\bar{\Omega})$ whenever $u \in C^{0}(\bar{\Omega})$. Prove that T restricts to a bounded linear operator from $C^{0}(\bar{\Omega})$ onto itself.

Solution. Denote by $S: C^{0}(\bar{\Omega}) \rightarrow C^{0}(\bar{\Omega})$ the restriction of T to $C^{0}(\bar{\Omega})$. Such restriction is a well-defined linear map by hypothesis. By the closed graph theorem, to prove that S is bounded if is enough to show that its graph is closed. Let $\left(f_{n}, S\left(f_{n}\right)\right)_{n \in \mathbb{N}}$ be any sequence in the graph of S such that $\left(f_{n}, S\left(f_{n}\right)\right) \rightarrow(f, g) \in C^{0}(\bar{\Omega}) \times C^{0}(\bar{\Omega})$. Since $f_{n} \rightarrow f$ and $S\left(f_{n}\right)=T\left(f_{n}\right) \rightarrow g$ as $n \rightarrow+\infty$ both w.r.t. the sup norm on $C^{0}(\bar{\Omega})$, we have

$$
\begin{aligned}
&\left\|f_{n}-f\right\|_{L^{2}(\Omega)} \leq|\Omega|^{1 / 2}\left\|f_{n}-f\right\|_{L^{\infty}(\Omega)} \rightarrow 0 \quad \text { as } n \rightarrow+\infty \\
&\left\|T\left(f_{n}\right)-g\right\|_{L^{2}(\Omega)} \leq|\Omega|^{1 / 2}\left\|S\left(f_{n}\right)-g\right\|_{L^{\infty}(\Omega)} \rightarrow 0 \quad \text { as } n \rightarrow+\infty .
\end{aligned}
$$

Hence, $\left(f_{n}, T\left(f_{n}\right)\right) \rightarrow(f, g)$ w.r.t to the norm on $L^{2}(\Omega) \times L^{2}(\Omega)$. By the closed graph theorem, since $T \in L\left(L^{2}(\Omega)\right)$ its graph is closed. Hence, $g=T(f)=S(f)$ in $L^{2}(\Omega)$, i.e almost everywhere on Ω. But since both g and $S(f)$ are continuous up to the boundary of Ω, we conclude that $g=S(f)$ on all of $\bar{\Omega}$ and the statement follows.

Exercise 3.4 Let

$$
X:=\left\{f \in C^{0}([0,2 \pi]) \text { s.t. } f(0)=f(2 \pi)\right\} \subset C^{0}([0,2 \pi])
$$

equipped with the usual sup norm.
(a) Show that X is Banach space.
(b) For every $k \in \mathbb{N}$, let $s_{k}: X \rightarrow \mathbb{R}$ be given by

$$
s_{k}(f):=\frac{1}{2 \pi} \sum_{n=-k}^{n=k} \int_{0}^{2 \pi} f(t) e^{-i n t} d t, \quad \forall f \in X
$$

Prove that s_{k} is a bounded linear functional on X for every $k \in \mathbb{N}$.
(c) Show that

$$
\sup _{k \in \mathbb{N}}\left\|s_{k}\right\|_{L(X, \mathbb{R})}=+\infty
$$

Hint. Notice that

$$
\sum_{n=-k}^{n=k} e^{i n t}=\frac{e^{i(k+1) t}-e^{i k t}}{e^{i t}-1}=\frac{\sin \left(\left(k+\frac{1}{2}\right) t\right)}{\sin \left(\frac{t}{2}\right)}, \quad \forall t \in(0,2 \pi), \forall k \in \mathbb{N} .
$$

(d) Prove that for every $t \in[0,2 \pi]$ there exists a continuous 2π-periodic function whose Fourier series does not converge at t.

Hint. Use the following equivalent formulation of the Banach-Steinhaus theorem, called condensation of singularities: if $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ are Banach spaces and the family $\left(A_{k}\right)_{k \in \mathbb{N}} \subset L(X, Y)$ is such that

$$
\sup _{k \in \mathbb{N}}\left\|A_{k}\right\|_{L(X, Y)}=+\infty
$$

then there exists $x \in X$ such that

$$
\sup _{k \in \mathbb{N}}\left\|A_{k}(x)\right\|_{Y}=+\infty
$$

Solution.

(a) Since X is a linear subspace of the Banach space $C^{0}([0,2 \pi])$, in order to show that X is Banach it is enough to show that X is a closed subspace. Indeed, let $\left(f_{n}\right)_{n \in \mathbb{N}} \subset X$ be such that $f_{n} \rightarrow f \in C^{0}([0,2 \pi])$ as $n \rightarrow+\infty$ w.r.t. the sup norm. We need to show that $f \in X$. Since $f_{n} \rightarrow f$ pointwise on $[0,2 \pi]$ and $f_{n}(0)=f_{n}(2 \pi)=0$ for every $n \in \mathbb{N}$, we conclude that $f(0)=f(2 \pi)=0$ and the statement follows.
(b) Fix any $k \in \mathbb{N}$. Since the linearity of s_{k} is clear, we are just left to show its continuity. We compute

$$
\left|s_{k}(f)\right| \leq \frac{1}{2 \pi} \sum_{n=-k}^{n=k} \int_{0}^{2 \pi}|f(t)| d t \leq(2 k+1)\|f\|_{\infty}, \quad \forall f \in X
$$

In particular then $\left\|s_{k}\right\|_{L(X, \mathbb{R})} \leq 2 k+1$ for every $k \in \mathbb{N}$.
(c) By using the hint, we get that for every $k \in \mathbb{N}$ and $f \in X$ we have

$$
s_{k}(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\sin \left(\left(k+\frac{1}{2}\right) t\right)}{\sin \left(\frac{t}{2}\right)} f(t) d t .
$$

Notice that for every $k \in \mathbb{N}$ it holds that

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{\sin \left(\left(k+\frac{1}{2}\right) t\right)}{\sin \left(\frac{t}{2}\right)}\right| d t & \geq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left|\sin \left(\left(k+\frac{1}{2}\right) t\right)\right|}{\pi t} d t=\int_{0}^{(2 k+1) \pi} \frac{|\sin (u)|}{\pi u} d u \\
& \geq \sum_{n=0}^{k} \int_{2 n \pi+\frac{\pi}{6}}^{2 n \pi+\frac{5 \pi}{6}} \frac{|\sin (u)|}{\pi u} d u \\
& \geq \sum_{n=0}^{2 k} \int_{2 n \pi+\frac{\pi}{6}}^{2 n \pi+\frac{5 \pi}{6}} \frac{1}{2 \pi u} d u \geq \sum_{n=0}^{2 k} \int_{2 n \pi+\frac{\pi}{3}}^{2 n \pi+\frac{2 \pi}{3}} \frac{1}{2 \pi(n+1)} d u \\
& \geq \sum_{n=0}^{2 k} \frac{1}{3(n+1)}=\frac{1}{3} \sum_{n=1}^{2 k+1} \frac{1}{n} .
\end{aligned}
$$

This implies that

$$
\sup _{k \in \mathbb{N}}\left\|s_{k}\right\|_{L(X, \mathbb{R})} \geq \frac{1}{3} \sup _{k \in \mathbb{N}} \sum_{n=1}^{2 k+1} \frac{1}{n}=\frac{1}{3} \sum_{n=1}^{+\infty} \frac{1}{n}=+\infty .
$$

(d) By using the hint, we get that there exists $f \in X$ such that

$$
\sup _{k \in \mathbb{N}}\left|s_{k}(f)\right|=+\infty
$$

Hence, given any $t \in[0,2 \pi]$ the function $[0,2 \pi] \ni s \rightarrow f(s-t)$ is a continuous 2π-periodic function whose partial Fourier sums don't converge at t.

