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Exercise 3.1 Let (X, ∥ · ∥X) be a Banach space and assume that U ⊂ X is a closed
vector subspace of X. We say that U is topologically complemented in X if there exist
a vector subspace V ⊂ X such that the linear isomorphism I : U × V → X given by
I(u, v) := u + v for very (u, v) ∈ U × V is a continuous isomorphism of normed vector
spaces with continuous inverse. Recall that the natural norm on U × V is given by
∥(u, v)∥U×V := ∥u∥X + ∥v∥X .

(a) Prove that if dim(U) < +∞, then U is topologically complemented.

(b) Prove that if dim(X/U) < +∞, then U is topologically complemented.

Solution. First, we claim that U is topologically complemented if and only if there
exists P ∈ L(X) such that P 2 = P and P (X) = U .

Suppose U ⊂ X is topologically complemented by V ⊂ X. Then, I : U × V → X with
(u, v) 7→ u + v is an continuous isomorphism with continuous inverse. We define

P1 : U × V → U × V, P := I ◦ P1 ◦ I−1 : X → X.

(u, v) 7→ (u, 0)

P1 is linear, bounded since ∥P1(u, v)∥U×V = ∥u∥U ≤ ∥(u, v)∥U×V and hence continuous.
As composition of linear continuous maps, P is linear and continuous. Moreover,

P ◦ P = (I ◦ P1 ◦ I−1) ◦ (I ◦ P1 ◦ I−1) = I ◦ P1 ◦ P1 ◦ I−1 = I ◦ P1 ◦ I−1 = P,

P (X) = I(U × {0}) = U.

Conversely, suppose U ⊂ X allows a continuous linear map P : X → X with P ◦ P = P
and P (X) = U . Let V := ker(P ). Then

P ◦ (1 − P ) = P − P = 0 ⇒ (1 − P )(X) ⊆ ker(P ) = V. (1)

In fact, (1 − P )(X) = V since given v ∈ V we have v = (1 − P )v. Analogously,

(1 − P ) ◦ P = P − P = 0 ⇒ U = P (X) ⊆ ker(1 − P ). (2)

In fact, U = ker(1 − P ) since x − Px = 0 implies x = Px ∈ U . We now claim that the
map

I : U × V → X, I(u, v) = u + v

is continuous and has a continuous inverse. Continuity of I follows directly from

∥I(u, v)∥X = ∥u + v∥X ≤ ∥u∥X + ∥v∥X = ∥(u, v)∥U×V .
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By the assumptions on P , especially (1), the map

Φ: X → U × V, Φ(x) =
(
Px, (1 − P )x

)
is well-defined and continuous. Since Pu = u for all u ∈ U by (2) we have

(Φ ◦ I)(u, v) = Φ(u + v) =
(
Pu + Pv, u − Pu + v − Pv

)
= (u, v),

(I ◦ Φ)(x) = I(Px, (1 − P )x) = Px + (1 − P )x = x,

so Φ is inverse to I. Consequently, U is topologically complemented.

(a) It is sufficient to construct a projection map P as above. Let e1, . . . , en be a basis
of the given finite-dimensional subspace U ⊂ X let f1, . . . , fn ∈ L(U,R) be the
associated dual basis, uniquely defined by the conditions

fi(ej) = δij :=

1 if i = j,

0 else.

From the Hahn-Banach Theorem it follows that there exist extensions Fi ∈ L(X;R)
with ∥Fi∥ = ∥fi∥. We define

P : X → X, P (x) =
n∑

i=1
Fi(x) ei.

Then P is linear and continuous, since

∥Px∥X ≤
( n∑

i=1
∥Fi∥∥ei∥X

)
∥x∥X .

By construction, P (X) ⊂ span{e1, . . . , en} = U . By definition of fi and Fi we have
P (ei) = ei for every i ∈ {1, . . . , n}. Therefore, P (X) = U . Finally, for every x ∈ X,

(P ◦ P )(x) = P
( n∑

i=1
Fi(x) ei

)
=

n∑
i=1

Fi(x) P (ei) =
n∑

i=1
Fi(x) ei = P (x).

It follows from Exercise 4.3 that U is topologically complemented.

(b) Denote by π : X → X/U , π(x) = [x] the canonical quotient map. Since dim(X/U) =
m < ∞ we can choose a basis [e1], . . . , [em] for X/U and let as above f1, . . . fm ∈
L(X/U,R) be the associated dual basis. Set Fi := fi ◦ π : X → R and define

P : X → X, P (x) =
n∑

i=1
Fi(x) ei.
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Since Fi(ej) = fi(π(ej)) = fi([ej]) = δij we have P ◦ P = P as above. Since
[e1], . . . , [em] is a basis for X/U , the representatives e1, . . . , em must be linearly
independent in X. Therefore, P (x) = 0 implies Fi(x) = fi([x]) = 0 for every
i ∈ {1, . . . , n} which in turn implies [x] = [0] or x ∈ U . Conversely, x ∈ U implies
π(x) = [0] and P (x) = 0. Thus we have shown ker(P ) = U . As in Exercise 4.3, we
conclude that (1 − P ) is a continuous projection onto U which implies that U is
topologically complemented.

Exercise 3.2 By using the Baire category theorem, prove the following statements.

(a) Let f ∈ C0([0, +∞)) be such that

lim
n→+∞

f(nt) = 0, ∀ t ∈ [0, +∞).

Prove that

lim
t→+∞

f(t) = 0.

(b) Let X be a Banach space. Show that any algebraic basis of X is either finite or
uncountable.

(c) Let (X, d) be a complete metric space and let (fn)n∈N be a sequence of continuous
and real-valued functions on X. Assume that (fn)n∈N converges pointwise to some
function f , i.e.

lim
n→+∞

fn(x) = f(x), ∀ x ∈ X.

Prove that the set of the continuity points of f , given by

C = {x ∈ X s.t. f is continuous at x},

is residual and dense in X.

Solution.

(a) Define fn(t) = |f(nt)| for every n ∈ N. Let ε > 0 and let

AN :=
∞⋂

n=N

{t ∈ [0, ∞) | fn(t) ≤ ε}.

Since fn is continuous, the preimage f−1
n ([0, ε]) = {t ∈ [0, ∞) | fn(t) ≤ ε} is closed for

all n ∈ N. Thus, the set AN is closed as intersection of closed sets. By assumption,

∀t ∈ [0, ∞) ∃Nt ∈ N ∀n ≥ Nt : fn(t) ≤ ε
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which implies

[0, ∞) =
∞⋃

N=1
AN .

Baire’s Lemma applied to the complete metric space ([0, ∞), |·|) implies that there
exists N0 ∈ N such that AN0 has non-empty interior, i. e. there exist 0 ≤ a < b such
that (a, b) ⊂ AN0 . This implies

∀n ≥ N0 ∀t ∈ (a, b) : fn(t) ≤ ε

⇔ ∀n ≥ N0 ∀t ∈ (na, nb) : |f(t)| ≤ ε.

If n > a
b−a

, then (n + 1)a < nb. For the intervals Ja,b(n) := (na, nb) this means that
Ja,b(n) ∩ Ja,b(n + 1) ̸= ∅. Let N1 > max{N0,

a
b−a

}. Then, in particular,

∀t > N1a : |f(t)| ≤ ε.

This proves lim
t→∞

f(t) = 0 since ε > 0 was arbitrary.

(b) Assume by contradiction that X has a countably infinite algebraic basis {e1, e2, . . .}.
For n ∈ N we define the linear subspaces An = span{e1, . . . , en} ⊂ X.

As finite dimensional subspace, An is closed. Suppose that An has non-empty interior.
Then there exist x ∈ An and ε > 0 such that Bε(x) ⊂ An. Since An is a linear
subspace, we may subtract x ∈ An from the elements in Bε(x) to obtain Bε(0) ⊂ An.
For the same reason,

An ⊃ {λy | λ > 0, y ∈ Bε(x)} = X.

This implies dim X ≤ n which contradicts our assumption that the algebraic basis
of X is infinite. Thus An must have empty interior and thus, being also closed, is
nowhere dense. By assumption,

X =
⋃

n∈N
An,

which implies that X is meager. Since X is complete, this contradicts Baire’s Lemma.

(c) First we notice that

C =
{

x ∈ X s.t. oscx(f) := lim
r→0+

(
sup

y∈Br(x)
f(y) − inf

y∈Br(x)
f(y)

)
= 0

}
.

By letting

Dε := {x ∈ X s.t. oscx(f) ≥ ε} ∀ ε > 0,

4 4/8



d-math
Prof. P. Hintz
Assistant: R. Caniato

Functional Analysis I
Exercise Sheet 3

ETH Zürich
Autumn 2022

we can write

C =
⋂
j∈N
j≥1

Dc
1/j.

By the Baire category theorem, in order to conclude it is sufficient to show that Dc
ε

is open and dense for every ε > 0.

Openness. We want to show that Dε is closed for every ε > 0. Fix any ε > 0. We
notice that Dε is a super lever set of the function X ∋ x 7→ oscx(f). Hence, we just
need to show that X ∋ x 7→ oscx(f) is upper semicontinuous. First, we show that
the function g : X → R given by

g(x) := lim
r→0+

sup
y∈Br(x)

f(y) ∀ x ∈ X

is upper semicontinuous. Fix any x ∈ X. By definition of g, for every η > 0 there
exists δ > 0 such that f(y) ≤ g(x) + η, for every y ∈ Bδ(x). Therefore, for every
y ∈ Bδ/2(x) we have

g(y) = lim
r→0+

sup
z∈Br(y)

f(z) ≤ sup
z∈Bδ/2(y)

f(z) ≤ g(x) + η

since Bδ/2(y) ⊂ Bδ(x). By taking the limit superior as y → x in the previous
inequality we get

lim sup
y→x

g(y) ≤ g(x) + η

and by arbitrariness of η >) we get that g is upper semicontinuous. Now we consider
the function h : X → R given by

h(x) := − lim
r→0+

inf
y∈Br(x)

f(y) = lim
r→0+

sup
y∈Br(x)

{−f(y)} ∀ x ∈ X

and we notice that applying exactly the same argument with −f instead of f we
get that h is upper semicontinuous as well. Since x 7→ oscx(f) = g + h, we get that
x 7→ oscx(f) is upper semicontinuous and we are done.

Density. Fix any ε > 0. For every k ∈ N we define

Ek :=
⋂

i,j≥k

{x ∈ X s.t. |fi(x) − fj(x)| ≤ ε/4}.

Notice that Ek is closed as intersection of closed sets (recall that each fn is continuous)
for every k ∈ N. Moreover,

X =
⋃

k∈N
Ek

5 5/8



d-math
Prof. P. Hintz
Assistant: R. Caniato

Functional Analysis I
Exercise Sheet 3

ETH Zürich
Autumn 2022

because the functions (fn)n∈N pointwise converges to f . As a result, by the Baire
category theorem, for every open set U ⊂ X there exists k ∈ N such that E◦

k ∩ U ̸= ∅.
In particular, there exists an open set V ⊂ Ek ∩ U . Hence, by definition of Ek, we
have |fi(x) − fj(x)| ≤ ε/4 for every x ∈ V and i, j ≥ k. Taking i = k and letting
j → +∞ we get |fk(x) − f(x)| ≤ ε/4, for every x ∈ V . Since fk is continuous,
by taking V possibily smaller we can assume that |fk(x) − fk(y)| ≤ ε/4, for every
x, y ∈ V . In conclusion, for every x, y ∈ V we get

|f(x) − f(y)| ≤ |f(x) − fk(x)| + |fk(x) − fk(y)| + |fk(y) − f(y)| ≤ 3ε

4 ,

which implies oscx(f) ≤ 3ε/4 < ε for every x ∈ V . Thus, V ⊂ Dc
ε and U ∩ Dx

ε ̸= ∅.
By arbitrariness of the open set U ⊂ X, our claim follows.

Exercise 3.3 Let Ω ⊂ Rn be a bounded and open subset of Rn and let T ∈ L(L2(Ω)).
Assume that T (u) ∈ C0(Ω) whenever u ∈ C0(Ω). Prove that T restricts to a bounded
linear operator from C0(Ω) onto itself.

Solution. Denote by S : C0(Ω) → C0(Ω) the restriction of T to C0(Ω). Such restriction
is a well-defined linear map by hypothesis. By the closed graph theorem, to prove that
S is bounded if is enough to show that its graph is closed. Let (fn, S(fn))n∈N be any
sequence in the graph of S such that (fn, S(fn)) → (f, g) ∈ C0(Ω)×C0(Ω). Since fn → f
and S(fn) = T (fn) → g as n → +∞ both w.r.t. the sup norm on C0(Ω), we have

∥fn − f∥L2(Ω) ≤ |Ω|1/2∥fn − f∥L∞(Ω) → 0 as n → +∞,

∥T (fn) − g∥L2(Ω) ≤ |Ω|1/2∥S(fn) − g∥L∞(Ω) → 0 as n → +∞.

Hence, (fn, T (fn)) → (f, g) w.r.t to the norm on L2(Ω) × L2(Ω). By the closed graph
theorem, since T ∈ L(L2(Ω)) its graph is closed. Hence, g = T (f) = S(f) in L2(Ω), i.e
almost everywhere on Ω. But since both g and S(f) are continuous up to the boundary
of Ω, we conclude that g = S(f) on all of Ω and the statement follows.

Exercise 3.4 Let

X := {f ∈ C0([0, 2π]) s.t. f(0) = f(2π)} ⊂ C0([0, 2π])

equipped with the usual sup norm.

(a) Show that X is Banach space.
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(b) For every k ∈ N, let sk : X → R be given by

sk(f) := 1
2π

n=k∑
n=−k

∫ 2π

0
f(t)e−int dt, ∀ f ∈ X.

Prove that sk is a bounded linear functional on X for every k ∈ N.

(c) Show that

sup
k∈N

∥sk∥L(X,R) = +∞.

Hint. Notice that
n=k∑

n=−k

eint = ei(k+1)t − eikt

eit − 1 =
sin((k + 1

2)t)
sin( t

2) , ∀ t ∈ (0, 2π), ∀ k ∈ N.

(d) Prove that for every t ∈ [0, 2π] there exists a continuous 2π-periodic function whose
Fourier series does not converge at t.

Hint. Use the following equivalent formulation of the Banach-Steinhaus theorem,
called condensation of singularities: if (X, ∥ · ∥X), (Y, ∥ · ∥Y ) are Banach spaces and
the family (Ak)k∈N ⊂ L(X, Y ) is such that

sup
k∈N

∥Ak∥L(X,Y ) = +∞,

then there exists x ∈ X such that

sup
k∈N

∥Ak(x)∥Y = +∞.

Solution.

(a) Since X is a linear subspace of the Banach space C0([0, 2π]), in order to show that X
is Banach it is enough to show that X is a closed subspace. Indeed, let (fn)n∈N ⊂ X
be such that fn → f ∈ C0([0, 2π]) as n → +∞ w.r.t. the sup norm. We need to
show that f ∈ X. Since fn → f pointwise on [0, 2π] and fn(0) = fn(2π) = 0 for
every n ∈ N, we conclude that f(0) = f(2π) = 0 and the statement follows.

(b) Fix any k ∈ N. Since the linearity of sk is clear, we are just left to show its continuity.
We compute

|sk(f)| ≤ 1
2π

n=k∑
n=−k

∫ 2π

0
|f(t)| dt ≤ (2k + 1)∥f∥∞, ∀ f ∈ X.

In particular then ∥sk∥L(X,R) ≤ 2k + 1 for every k ∈ N.
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(c) By using the hint, we get that for every k ∈ N and f ∈ X we have

sk(f) = 1
2π

∫ 2π

0

sin((k + 1
2)t)

sin( t
2) f(t) dt.

Notice that for every k ∈ N it holds that

1
2π

∫ 2π

0

∣∣∣∣∣sin((k + 1
2)t)

sin( t
2)

∣∣∣∣∣ dt ≥ 1
2π

∫ 2π

0

|sin((k + 1
2)t)|

πt
dt =

∫ (2k+1)π

0

|sin(u)|
πu

du

≥
k∑

n=0

∫ 2nπ+ 5π
6

2nπ+ π
6

|sin(u)|
πu

du

≥
2k∑

n=0

∫ 2nπ+ 5π
6

2nπ+ π
6

1
2πu

du ≥
2k∑

n=0

∫ 2nπ+ 2π
3

2nπ+ π
3

1
2π(n + 1) du

≥
2k∑

n=0

1
3(n + 1) = 1

3

2k+1∑
n=1

1
n

.

This implies that

sup
k∈N

∥sk∥L(X,R) ≥ 1
3 sup

k∈N

2k+1∑
n=1

1
n

= 1
3

+∞∑
n=1

1
n

= +∞.

(d) By using the hint, we get that there exists f ∈ X such that

sup
k∈N

|sk(f)| = +∞.

Hence, given any t ∈ [0, 2π] the function [0, 2π] ∋ s → f(s − t) is a continuous
2π-periodic function whose partial Fourier sums don’t converge at t.
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