Exercise 4.1 For $f \in L^{1}([0,2 \pi], \mathbb{C})$ we define the k-th Fourier coefficient of f to be

$$
\hat{f}(k):=\int_{0}^{2 \pi} f(t) e^{-i k t} d t \quad \forall k \in \mathbb{Z}
$$

and we let $\mathcal{F}(f):=(\hat{f}(k))_{k \in \mathbb{Z}}$.
(a) Show that $\mathcal{F}: L^{1}([0,2 \pi], \mathbb{C}) \rightarrow \ell^{\infty}(\mathbb{Z})$ is a bounded linear operator.
(b) Prove the Riemann-Lebesgue lemma, i.e. show $\mathcal{F}(f) \in c_{0}(\mathbb{Z})$ for every $f \in L^{1}(0,2 \pi)$.
(c) Prove that $\mathcal{F}: L^{1}([0,2 \pi], \mathbb{C}) \rightarrow c_{0}(\mathbb{Z})$ has dense range but it is not surjective.

Hint. Use the open mapping theorem to solve part (c).

Exercise 4.2 Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space and let $\left(Y_{1},\|\cdot\|_{Y_{1}}\right),\left(Y_{2},\|\cdot\|_{Y_{2}}\right), \ldots$ be normed spaces. For every $n \in \mathbb{N}$, let $G_{n} \subset L\left(X, Y_{n}\right)$ be an unbounded set of linear continuous mappings from X to Y_{n}. Prove that there exists $x \in X$ such that

$$
\sup _{T \in G_{n}}\|T x\|_{Y_{n}}=+\infty, \quad \forall n \in \mathbb{N}
$$

Hint. Use the Baire category theorem and the Banach-Steinhaus theorem.

Exercise 4.3 Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ and $\left(Z,\|\cdot\|_{Z}\right)$ be normed spaces. We consider the space $\left(X \times Y,\|\cdot\|_{X \times Y}\right)$, where $\|(x, y)\|_{X \times Y}=\|x\|_{X}+\|y\|_{Y}$ and a bilinear map $B: X \times Y \rightarrow Z$.
(a) Show that B is continuous if

$$
\exists C>0 \quad \forall(x, y) \in X \times Y: \quad\|B(x, y)\|_{Z} \leq C\|x\|_{X}\|y\|_{Y} .
$$

(b) Assume that $\left(X,\|\cdot\|_{X}\right)$ is Banach. Assume further that the maps

$$
\begin{array}{rlrl}
X & \rightarrow Z & Y & \rightarrow Z \\
x & \mapsto B\left(x, y^{\prime}\right) & y & \mapsto B\left(x^{\prime}, y\right)
\end{array}
$$

are continuous for every $x^{\prime} \in X$ and $y^{\prime} \in Y$. Prove that then B is continuous.
Hint. Part (b) uses the Banach-Steinhaus theorem.

Exercise 4.4 Let $\mathbb{D}:=\{z \in \mathbb{C}$ s.t. $|z|<1\} \subset \mathbb{C}$ and let

$$
\mathcal{H}^{2}(\mathbb{D}):=\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { s.t. } f \text { is holomorphic with } \sup _{0 \leq r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{2} d t<+\infty\right\} .
$$

[^0](a) Derive a characterization of all the functions $f \in \mathcal{H}^{2}(\mathbb{D})$ in terms of the coefficients $\left(a_{k}(f)\right)_{k \in \mathbb{N}} \subset \mathbb{C}$ of their power series expansion, i.e. those coefficients for which
$$
f(z)=\sum_{k=0}^{+\infty} a_{k}(f) z^{k}, \quad \forall z \in \mathbb{D}
$$
(b) Prove that, for every $f, g \in \mathcal{H}^{2}(\mathbb{D})$, the limit
$$
\langle f, g\rangle:=\frac{1}{2 \pi} \lim _{r \rightarrow 1^{-}} \int_{0}^{2 \pi} f\left(r e^{i t}\right) \overline{g\left(r e^{i t}\right)} d t
$$
exists and express it in terms of the coefficients $\left(a_{k}(f)\right)_{k \in \mathbb{N}},\left(a_{k}(g)\right)_{k \in \mathbb{N}} \subset \mathbb{C}$ of their power series expansions.
(c) Prove that $\left(\mathcal{H}^{2}(\mathbb{D}),\langle\cdot, \cdot\rangle\right)$ is a Hilbert space with $\left(\mathbb{D} \ni z \mapsto z^{n} \in \mathbb{C}\right)_{n \in \mathbb{N}}$ being an orthonormal basis.

[^0]: Last modified: 14 October 2022

