Exercise 4.1 For $f \in L^1([0, 2\pi], \mathbb{C})$ we define the k-th Fourier coefficient of f to be

$$\hat{f}(k) := \int_0^{2\pi} f(t) e^{-ikt} dt \qquad \forall k \in \mathbb{Z}$$

and we let $\mathcal{F}(f) := (\hat{f}(k))_{k \in \mathbb{Z}}$.

- (a) Show that $\mathcal{F}: L^1([0, 2\pi], \mathbb{C}) \to \ell^\infty(\mathbb{Z})$ is a bounded linear operator.
- (b) Prove the Riemann-Lebesgue lemma, i.e. show $\mathcal{F}(f) \in c_0(\mathbb{Z})$ for every $f \in L^1(0, 2\pi)$.
- (c) Prove that $\mathcal{F}: L^1([0, 2\pi], \mathbb{C}) \to c_0(\mathbb{Z})$ has dense range but it is not surjective.

Hint. Use the open mapping theorem to solve part (c).

Solution.

(a) The linearity of \mathcal{F} is clear from the linearity of the integral. Fix any $f \in L^1(0, 2\pi)$ and notice that for every $k \in \mathbb{Z}$ we have

$$|\hat{f}(k)| = \left| \int_0^{2\pi} f(t)e^{-ikt} \, dt \right| \le \int_0^{2\pi} |f(t)e^{-ikt}| \, dt = \int_0^{2\pi} |f(t)| \, dt = \|f\|_{L^1([0,2\pi],\mathbb{C})}.$$

Hence, $\|\mathcal{F}(f)\|_{\ell^{\infty}(\mathbb{Z})} \leq \|f\|_{L^{1}([0,2\pi],\mathbb{C})}$ for every $f \in L^{1}([0,2\pi],\mathbb{C})$ an we conclude that \mathcal{F} is a bounded linear operator.

(b) First, consider any $f \in C^0([0, 2\pi], \mathbb{C})$. Since f is uniformly continuous on $[0, 2\pi]$, there exists $\delta : (0, +\infty) \to (0, +\infty)$ such that for every $\varepsilon \in (0, +\infty)$ we have

$$x, y \in [0, 2\pi]$$
 and $|x - y| < \delta(\varepsilon) \Rightarrow |f(x) - f(y)| < \varepsilon$.

Hence, for every $\varepsilon \in (0, +\infty)$ and for every $k \in \mathbb{N}$ we have

$$\left| \int_0^{2\pi} f(t) e^{-ikt} \, dt - \sum_{m=0}^{\left[\frac{2\pi}{\delta(\varepsilon)}\right]} f(m\delta(\varepsilon)) \int_{m\delta(\varepsilon)}^{\min\{(m+1)\delta(\varepsilon), 2\pi\}} e^{-ikt} \, dt \right| \le 2\pi\varepsilon.$$

Moreover, for every $\varepsilon \in (0, +\infty)$ it holds that

$$\lim_{k \to +\infty} \sup_{k \to +\infty} \left| \sum_{m=0}^{\left[\frac{2\pi}{\delta(\varepsilon)}\right]} f(m\delta(\varepsilon)) \int_{m\delta(\varepsilon)}^{\min\{(m+1)\delta(\varepsilon), 2\pi\}} e^{-ikt} dt \right| \le \limsup_{k \to +\infty} \frac{2}{k} \|f\|_{L^{\infty}} \left(\left[\frac{2\pi}{\delta(\varepsilon)}\right] + 1 \right) = 0.$$

Last modified: 21 October 2022

1/6

By combining the previous two inequalities, we get

$$\limsup_{k \to +\infty} |\hat{f}(k)| = \limsup_{k \to +\infty} \left| \int_0^{2\pi} f(t) e^{-ikt} \, dt \right| \le 2\pi\varepsilon, \qquad \forall \, \varepsilon \in (0, +\infty).$$

By letting $\varepsilon \to 0^+$ in the previous inequality we get the statement for $f \in C^0([0, 2\pi], \mathbb{C})$.

Next, pick any $f \in L^1([0, 2\pi], \mathbb{C})$. Since $C^0([0, 2\pi], \mathbb{C})$ is dense in $L^1([0, 2\pi], \mathbb{C})$, for every given $\varepsilon > 0$ we can find $g_{\varepsilon} \in C^0([0, 2\pi], \mathbb{C})$ such that $||f - g_{\varepsilon}||_{L^1([0, 2\pi], \mathbb{C})} \leq \varepsilon$. Thus, we have that

$$\limsup_{k \to +\infty} |\hat{f}(k)| = \limsup_{k \to +\infty} \left| \int_0^{2\pi} f(t) e^{-ikt} \, dt \right| \le \limsup_{k \to +\infty} \left| \int_0^{2\pi} g_{\varepsilon}(t) e^{-ikt} \, dt \right| + \varepsilon \le \varepsilon,$$

for every $\varepsilon > 0$. By letting $\varepsilon \to 0^+$ in the previous inequality, the statement follows.

(c) Let $(e^{(k)})_{k\in\mathbb{Z}} \subset c_0(\mathbb{Z})$ be given by $e_n^{(k)} := \delta_{nk}$, for every $k, n \in \mathbb{Z}$. Notice that $(e^{(k)})_{k\in\mathbb{Z}}$ is dense in $c_0(\mathbb{Z})$. Moreover, we have $(e^{(k)})_{k\in\mathbb{N}} \subset \mathcal{F}(L^1([0,2\pi],\mathbb{C}))$, because $e^{(k)} = \mathcal{F}([0,2\pi] \ni t \mapsto e^{ikt} \in \mathbb{C})$ for every $k \in \mathbb{Z}$. Hence, we conclude that $\mathcal{F}(L^1([0,2\pi],\mathbb{C}))$ is dense in $c_0(\mathbb{Z})$.

By contradiction, assume that $\mathcal{F}(L^1([0, 2\pi], \mathbb{C})) = c_0(\mathbb{Z})$. Notice that \mathcal{F} is injective. Indeed, if $\mathcal{F}(f) = 0$ then we have that

$$\int_{0}^{2\pi} f(t)p(t) \, dt = 0 \tag{1}$$

for every trigonometric polynomial on $[0, 2\pi]$. By the density of the trigonometric polynomials in the 2π -periodic continuous functions on $[0, 2\pi]$, we have that (1) holds for every continuous and 2π -periodic function on $[0, 2\pi]$. Hence, f = 0 by the fundamental principle of the calculus of variations.

Then, by the open mapping theorem we would have that \mathbb{F} is continuously invertible. To see that this is not the case, consider the functions $(f_n)_{n \in \mathbb{N}} \subset L^1([0, 2\pi], \mathbb{C})$ given by

$$f_n(t) = \sum_{k=-n}^{k=n} e^{ikt}, \qquad \forall t \in [0, 2\pi], \, \forall n \in \mathbb{N}.$$

Note that for all $n \in \mathbb{N}$ we have

$$f_n(t) = \frac{\sin((n+\frac{1}{2})t)}{\sin(\frac{t}{2})}, \qquad \forall t \in [0, 2\pi], \, \forall n \in \mathbb{N}.$$

2/6

Thus, we obtain that

$$\begin{split} \|f_n\|_{L^1([0,2\pi],\mathbb{C})} &= \int_0^{2\pi} \frac{|\sin((n+\frac{1}{2})t)|}{|\sin(\frac{t}{2})|} \, dt \ge (2n+1) \int_0^{2\pi} \frac{|\sin((n+\frac{1}{2})t)|}{(n+\frac{1}{2})t} \, dt \\ &= 2 \int_0^{(2n+1)\pi} \frac{|\sin(t)|}{t} \, dt. \end{split}$$

Since the latter integral diverges to $+\infty$ as $n \to +\infty$, we have $||f_n||_{L^1([0,2\pi],\mathbb{C})} \to +\infty$ as $n \to +\infty$. But since $||\mathcal{F}(f_n)||_{\ell^{\infty}(\mathbb{Z})} = 1$, for every $n \in \mathbb{N}$, we conclude that \mathcal{F} cannot be continuously invertible.

Exercise 4.2 Let $(X, \|\cdot\|_X)$ be a Banach space and let $(Y_1, \|\cdot\|_{Y_1}), (Y_2, \|\cdot\|_{Y_2}), \ldots$ be normed spaces. For every $n \in \mathbb{N}$, let $G_n \subset L(X, Y_n)$ be an unbounded set of linear continuous mappings from X to Y_n . Prove that there exists $x \in X$ such that

$$\sup_{T \in G_n} \|Tx\|_{Y_n} = +\infty, \qquad \forall n \in \mathbb{N}.$$

Hint. Use the Baire category theorem and the Banach-Steinhaus theorem.

Solution. Assume by contradiction that for every $x \in X$ there exists $n \in \mathbb{N}$ such that

$$\sup_{T\in G_n} \|Tx\|_{Y_n} < +\infty.$$

Hence, we can write

$$X = \bigcup_{n \in \mathbb{N}} A_n \quad \text{with} \quad A_n := \left\{ x \in X \text{ s.t. } \sup_{T \in G_n} \|Tx\|_{Y_n} < +\infty \right\}, \, \forall \, n \in \mathbb{N}.$$

Notice that X would be meagre if all the A_n , $n \in \mathbb{N}$, were meagre. Since X is not meagre by the Baire category theorem, we have that there exists $N \in \mathbb{N}$ such that A_N is not meagre. Notice that

$$A_N := \bigcup_{k \in \mathbb{N}} C_k \quad \text{with} \quad C_k := \left\{ x \in X \text{ s.t. } \sup_{T \in G_N} \|Tx\|_{Y_N} \le k \right\}, \, \forall \, k \in \mathbb{N}.$$

Since $G_N \in L(X, Y_N)$, we have that C_k is closed for every $k \in \mathbb{N}$. together with the fact that A_N is not meagre, this implies that there exists $K \in \mathbb{N}$ such that $C_K^{\circ} \neq \emptyset$. That is,

3/6

there exist $x \in X$ and $\varepsilon \in (0, +\infty)$ such that $\{y \in X \text{ s.t. } \|y - x\|_X < \varepsilon\} \subset C_K$. This implies that for every $y \in X$ with $\|y\|_X \leq 1$ we have

$$\|Ty\|_{Y_N} = \frac{2}{\varepsilon} \left\| T\left(x + \frac{\varepsilon}{2}y - x\right) \right\|_{Y_N}$$

$$\leq \frac{2}{\varepsilon} \left(\left\| T\left(x + \frac{\varepsilon}{2}y\right) \right\|_{Y_N} + \|T(x)\|_{Y_N} \right) \leq \frac{4K}{\varepsilon}, \quad \forall T \in G_N.$$

This contradict the hypothesis that G_N is unbounded and the statement follows. \Box

Exercise 4.3 Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be normed spaces. We consider the space $(X \times Y, \|\cdot\|_{X \times Y})$, where $\|(x, y)\|_{X \times Y} = \|x\|_X + \|y\|_Y$ and a bilinear map $B: X \times Y \to Z$.

(a) Show that B is continuous if

$$\exists C > 0 \quad \forall (x, y) \in X \times Y : \quad \|B(x, y)\|_Z \le C \|x\|_X \|y\|_Y.$$
 (†)

(b) Assume that $(X, \|\cdot\|_X)$ is Banach. Assume further that the maps

$$\begin{array}{ll} X \to Z & Y \to Z \\ x \mapsto B(x,y') & y \mapsto B(x',y) \end{array}$$

are continuous for every $x' \in X$ and $y' \in Y$. Prove that then B is continuous.

Hint. Part (b) uses the Banach-Steinhaus theorem.

Solution.

(a) Let $((x_k, y_k))_{k \in \mathbb{N}}$ be a sequence in $X \times Y$ converging to (x, y) in $(X \times Y, \|\cdot\|_{X \times Y})$. By definition,

$$||x_k - x||_X + ||y_k - y||_Y = ||(x_k - x, y_k - y)||_{X \times Y} = ||(x_k, y_k) - (x, y)||_{X \times Y}$$

which yields convergence $x_k \to x$ in X and $y_k \to y$ in Y. Since $B: X \times Y \to Z$ is bilinear, we have

$$||B(x_k, y_k) - B(x, y)||_Z = ||B(x_k, y_k) - B(x, y_k) + B(x, y_k) - B(x, y)||_Z$$

= $||B(x_k - x, y_k) - B(x, y_k - y)||_Z$
 $\leq ||B(x_k - x, y_k)||_Z + ||B(x, y_k - y)||_Z.$

Using the assumption $||B(x,y)||_Z \leq C||x||_X||y||_Y$ and the fact that convergence of $(y_k)_{k\in\mathbb{N}}$ in $(Y, \|\cdot\|_Y)$ implies that $||y_k||_Y$ is bounded uniformly for all $k \in \mathbb{N}$, we conclude

$$||B(x_k, y_k) - B(x, y)||_Z \le C ||x - x_k||_X ||y_k||_Y + C ||x||_X ||y - y_k||_Y \xrightarrow{k \to \infty} 0.$$

4/6

,

(b) Let $B_1^Y \subset Y$ be the unit ball around the origin in $(Y, \|\cdot\|_Y)$. For every $x \in X$ we have by assumption

$$\sup_{y'\in B_1^Y} \|B(x,y')\|_Z \le \sup_{y'\in B_1^Y} \|y'\|_Y \|B(x,\cdot)\|_{L(Y,Z)} \le \|B(x,\cdot)\|_{L(Y,Z)} < \infty,$$

which means that the maps $(B(\cdot, y'))_{y' \in B_1^Y} \in L(X, Z)$ are pointwise bounded. Since X is assumed to be complete, the Theorem of Banach-Steinhaus implies that $(B(\cdot, y'))_{y' \in B_1^Y} \in L(X, Z)$ are uniformly bounded, i. e.

$$C := \sup_{y' \in B_1^Y} \|B(\cdot, y')\|_{L(X,Z)} < \infty.$$

From this we conclude

$$\begin{split} \|B(x,y)\|_{Z} &= \|y\|_{Y} \left\| B\left(x, \frac{y}{\|y\|_{Y}}\right) \right\|_{Z} \\ &\leq \|y\|_{Y} \|x\|_{X} \left\| B\left(\cdot, \frac{y}{\|y\|_{Y}}\right) \right\|_{L(X,Z)} \leq C \|x\|_{X} \|y\|_{Y}, \end{split}$$

so B is continuous by (a).

Exercise 4.4 Let $\mathbb{D} := \{z \in \mathbb{C} \text{ s.t. } |z| < 1\} \subset \mathbb{C}$ and let

$$\mathcal{H}^2(\mathbb{D}) := \bigg\{ f : \mathbb{D} \to \mathbb{C} \text{ s.t. } f \text{ is holomorphic with } \sup_{0 \le r < 1} \int_0^{2\pi} |f(re^{it})|^2 dt < +\infty \bigg\}.$$

(a) Derive a characterization of all the functions $f \in \mathcal{H}^2(\mathbb{D})$ in terms of the coefficients $(a_k(f))_{k \in \mathbb{N}} \subset \mathbb{C}$ of their power series expansion, i.e. those coefficients for which

$$f(z) = \sum_{k=0}^{+\infty} a_k(f) z^k, \quad \forall z \in \mathbb{D}.$$

(b) Prove that, for every $f, g \in \mathcal{H}^2(\mathbb{D})$, the limit

$$\langle f,g\rangle:=\frac{1}{2\pi}\lim_{r\to 1^-}\int_0^{2\pi}f(re^{it})\overline{g(re^{it})}\,dt$$

exists and express it in terms of the coefficients $(a_k(f))_{k\in\mathbb{N}}, (a_k(g))_{k\in\mathbb{N}} \subset \mathbb{C}$ of their power series expansions.

(c) Prove that $(\mathcal{H}^2(\mathbb{D}), \langle \cdot, \cdot \rangle)$ is a Hilbert space with $(\mathbb{D} \ni z \mapsto z^n \in \mathbb{C})_{n \in \mathbb{N}}$ being an orthonormal basis.

5/6

Solution.

(a) From complex analysis, we know that for every $f \in \mathcal{H}^2(\mathbb{D})$

$$f(z) = \sum_{k=0}^{+\infty} a_k(f) z^k, \quad \forall z \in \mathbb{D},$$

the convergence radius is at least 1 and that the power series convergences locally uniformly to f. Thus, we obtain that for all $r \in (0, 1)$ that

$$\int_{0}^{2\pi} |f(re^{it})|^2 dt = \int_{0}^{2\pi} \sum_{k,l=0}^{+\infty} a_k(f) \overline{a_l(f)} r^{k+l} e^{i(k-l)t} dt$$
$$= 2\pi \sum_{k,l=0}^{+\infty} a_k(f) \overline{a_l(f)} r^{k+l} \delta_{kl} = 2\pi \sum_{k=0}^{+\infty} |a_k(f)|^2 r^{2k}$$

Hence, $f \in \mathcal{H}^2(\mathbb{D})$ if and only if $(a_k(f))_{k \in \mathbb{N}} \in \ell^2(\mathbb{N}, \mathbb{C})$.

(b) By similar calculations and arguments as above, for every $f, g \in \mathcal{H}^2(\mathbb{D})$ and for every $r \in (0, 1)$ we have that

$$\int_{0}^{2\pi} f(re^{it})\overline{g(re^{it})} dt = \int_{0}^{2\pi} \sum_{k,l=0}^{+\infty} a_k(f)\overline{a_l(g)}r^{k+l}e^{i(k-l)t} dt$$
$$= 2\pi \sum_{k,l=0}^{+\infty} a_k(f)\overline{a_l(g)}r^{k+l}\delta_{kl} = 2\pi \sum_{k=0}^{+\infty} a_k(f)\overline{a_l(g)}r^{2k}$$

Since $(a_k(f))_{k\in\mathbb{N}}$, $(a_k(g))_{k\in\mathbb{N}} \in \ell^2(\mathbb{N}, \mathbb{C})$ by (a), by Cauchy-Schwartz and dominated convergence we get that

$$\langle f,g\rangle = \lim_{r \to 1^{-1}} \sum_{k=0}^{+\infty} a_k(f) \overline{a_l(g)} r^{2k} = \sum_{k=0}^{+\infty} a_k(f) \overline{a_l(g)}.$$

(c) Exercises (a) and (b) above show that $(\mathcal{H}^2(\mathbb{D}), \langle \cdot, \cdot \rangle)$ is isometrically isomorphic to $\ell^2(\mathbb{N}, \mathbb{C})$. Hence, $(\mathcal{H}^2(\mathbb{D}), \langle \cdot, \cdot \rangle)$ is a Hilbert space. Moreover, since $(e^{(k)})_{k \in \mathbb{N}}$ given by $e_n^{(k)} := \delta_{nk}$ $(n, k \in \mathbb{N})$ is an orthonormal basis of $\ell^2(\mathbb{N}, \mathbb{C})$ which corresponds to $(\mathbb{D} \ni z \mapsto z^n \in \mathbb{C})_{n \in \mathbb{N}}$ through the given isometric isomorphism, the statement follows.

Г		1