Exercise 4.1 For $f \in L^{1}([0,2 \pi], \mathbb{C})$ we define the k-th Fourier coefficient of f to be

$$
\hat{f}(k):=\int_{0}^{2 \pi} f(t) e^{-i k t} d t \quad \forall k \in \mathbb{Z}
$$

and we let $\mathcal{F}(f):=(\hat{f}(k))_{k \in \mathbb{Z}}$.
(a) Show that $\mathcal{F}: L^{1}([0,2 \pi], \mathbb{C}) \rightarrow \ell^{\infty}(\mathbb{Z})$ is a bounded linear operator.
(b) Prove the Riemann-Lebesgue lemma, i.e. show $\mathcal{F}(f) \in c_{0}(\mathbb{Z})$ for every $f \in L^{1}(0,2 \pi)$.
(c) Prove that $\mathcal{F}: L^{1}([0,2 \pi], \mathbb{C}) \rightarrow c_{0}(\mathbb{Z})$ has dense range but it is not surjective.

Hint. Use the open mapping theorem to solve part (c).

Solution.

(a) The linearity of \mathcal{F} is clear from the linearity of the integral. Fix any $f \in L^{1}(0,2 \pi)$ and notice that for every $k \in \mathbb{Z}$ we have

$$
|\hat{f}(k)|=\left|\int_{0}^{2 \pi} f(t) e^{-i k t} d t\right| \leq \int_{0}^{2 \pi}\left|f(t) e^{-i k t}\right| d t=\int_{0}^{2 \pi}|f(t)| d t=\|f\|_{L^{1}([0,2 \pi], \mathbb{C})}
$$

Hence, $\|\mathcal{F}(f)\|_{\ell^{\infty}(\mathbb{Z})} \leq\|f\|_{L^{1}([0,2 \pi], \mathbb{C})}$ for every $f \in L^{1}([0,2 \pi], \mathbb{C})$ an we conclude that \mathcal{F} is a bounded linear operator.
(b) First, consider any $f \in C^{0}([0,2 \pi], \mathbb{C})$. Since f is uniformly continuous on $[0,2 \pi]$, there exists $\delta:(0,+\infty) \rightarrow(0,+\infty)$ such that for every $\varepsilon \in(0,+\infty)$ we have

$$
x, y \in[0,2 \pi] \text { and }|x-y|<\delta(\varepsilon) \Rightarrow|f(x)-f(y)|<\varepsilon
$$

Hence, for every $\varepsilon \in(0,+\infty)$ and for every $k \in \mathbb{N}$ we have

$$
\left|\int_{0}^{2 \pi} f(t) e^{-i k t} d t-\sum_{m=0}^{\left[\frac{2 \pi}{\delta(\varepsilon)}\right]} f(m \delta(\varepsilon)) \int_{m \delta(\varepsilon)}^{\min \{(m+1) \delta(\varepsilon), 2 \pi\}} e^{-i k t} d t\right| \leq 2 \pi \varepsilon .
$$

Moreover, for every $\varepsilon \in(0,+\infty)$ it holds that

$$
\limsup _{k \rightarrow+\infty}\left|\sum_{m=0}^{\left[\frac{2 \pi}{\delta(\varepsilon)}\right]} f(m \delta(\varepsilon)) \int_{m \delta(\varepsilon)}^{\min \{(m+1) \delta(\varepsilon), 2 \pi\}} e^{-i k t} d t\right| \leq \limsup _{k \rightarrow+\infty} \frac{2}{k}\|f\|_{L^{\infty}}\left(\left[\frac{2 \pi}{\delta(\varepsilon)}\right]+1\right)=0 .
$$

[^0]Prof. P. Hintz
Assistant: R. Caniato

Functional Analysis I
 Exercise Sheet 4

By combining the previous two inequalities, we get

$$
\limsup _{k \rightarrow+\infty}|\hat{f}(k)|=\limsup _{k \rightarrow+\infty}\left|\int_{0}^{2 \pi} f(t) e^{-i k t} d t\right| \leq 2 \pi \varepsilon, \quad \forall \varepsilon \in(0,+\infty) .
$$

By letting $\varepsilon \rightarrow 0^{+}$in the previous inequality we get the statement for $f \in$ $C^{0}([0,2 \pi], \mathbb{C})$.

Next, pick any $f \in L^{1}([0,2 \pi], \mathbb{C})$. Since $C^{0}([0,2 \pi], \mathbb{C})$ is dense in $L^{1}([0,2 \pi], \mathbb{C})$, for every given $\varepsilon>0$ we can find $g_{\varepsilon} \in C^{0}([0,2 \pi], \mathbb{C})$ such that $\left\|f-g_{\varepsilon}\right\|_{L^{1}([0,2 \pi], \mathbb{C})} \leq \varepsilon$. Thus, we have that

$$
\limsup _{k \rightarrow+\infty}|\hat{f}(k)|=\limsup _{k \rightarrow+\infty}\left|\int_{0}^{2 \pi} f(t) e^{-i k t} d t\right| \leq \limsup _{k \rightarrow+\infty}\left|\int_{0}^{2 \pi} g_{\varepsilon}(t) e^{-i k t} d t\right|+\varepsilon \leq \varepsilon,
$$

for every $\varepsilon>0$. By letting $\varepsilon \rightarrow 0^{+}$in the previous inequality, the statement follows.
(c) Let $\left(e^{(k)}\right)_{k \in \mathbb{Z}} \subset c_{0}(\mathbb{Z})$ be given by $e_{n}^{(k)}:=\delta_{n k}$, for every $k, n \in \mathbb{Z}$. Notice that $\left(e^{(k)}\right)_{k \in \mathbb{Z}}$ is dense in $c_{0}(\mathbb{Z})$. Moreover, we have $\left(e^{(k)}\right)_{k \in \mathbb{N}} \subset \mathcal{F}\left(L^{1}([0,2 \pi], \mathbb{C})\right)$, because $e^{(k)}=\mathcal{F}\left([0,2 \pi] \ni t \mapsto e^{i k t} \in \mathbb{C}\right)$ for every $k \in \mathbb{Z}$. Hence, we conclude that $\mathcal{F}\left(L^{1}([0,2 \pi], \mathbb{C})\right)$ is dense in $c_{0}(\mathbb{Z})$.
By contradiction, assume that $\mathcal{F}\left(L^{1}([0,2 \pi], \mathbb{C})\right)=c_{0}(\mathbb{Z})$. Notice that \mathcal{F} is injective. Indeed, if $\mathcal{F}(f)=0$ then we have that

$$
\begin{equation*}
\int_{0}^{2 \pi} f(t) p(t) d t=0 \tag{1}
\end{equation*}
$$

for every trigonometric polynomial on $[0,2 \pi]$. By the density of the trigonometric polynomials in the 2π-periodic continuous functions on $[0,2 \pi]$, we have that (1) holds for every continuous and 2π-periodic function on $[0,2 \pi]$. Hence, $f=0$ by the fundamental principle of the calculus of variations.

Then, by the open mapping theorem we would have that \mathbb{F} is continuously invertible. To see that this is not the case, consider the functions $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{1}([0,2 \pi], \mathbb{C})$ given by

$$
f_{n}(t)=\sum_{k=-n}^{k=n} e^{i k t}, \quad \forall t \in[0,2 \pi], \forall n \in \mathbb{N} .
$$

Note that for all $n \in \mathbb{N}$ we have

$$
f_{n}(t)=\frac{\sin \left(\left(n+\frac{1}{2}\right) t\right)}{\sin \left(\frac{t}{2}\right)}, \quad \forall t \in[0,2 \pi], \forall n \in \mathbb{N} .
$$

Thus, we obtain that

$$
\begin{aligned}
\left\|f_{n}\right\|_{L^{1}([0,2 \pi], \mathrm{C})} & =\int_{0}^{2 \pi} \frac{\left|\sin \left(\left(n+\frac{1}{2}\right) t\right)\right|}{\left|\sin \left(\frac{t}{2}\right)\right|} d t \geq(2 n+1) \int_{0}^{2 \pi} \frac{\left|\sin \left(\left(n+\frac{1}{2}\right) t\right)\right|}{\left(n+\frac{1}{2}\right) t} d t \\
& =2 \int_{0}^{(2 n+1) \pi} \frac{|\sin (t)|}{t} d t .
\end{aligned}
$$

Since the latter integral diverges to $+\infty$ as $n \rightarrow+\infty$, we have $\left\|f_{n}\right\|_{L^{1}([0,2 \pi], \mathrm{C})} \rightarrow+\infty$ as $n \rightarrow+\infty$. But since $\left\|\mathcal{F}\left(f_{n}\right)\right\|_{\ell_{\infty}(\mathbb{Z})}=1$, for every $n \in \mathbb{N}$, we conclude that \mathcal{F} cannot be continuously invertible.

Exercise 4.2 Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space and let $\left(Y_{1},\|\cdot\|_{Y_{1}}\right),\left(Y_{2},\|\cdot\|_{Y_{2}}\right), \ldots$ be normed spaces. For every $n \in \mathbb{N}$, let $G_{n} \subset L\left(X, Y_{n}\right)$ be an unbounded set of linear continuous mappings from X to Y_{n}. Prove that there exists $x \in X$ such that

$$
\sup _{T \in G_{n}}\|T x\|_{Y_{n}}=+\infty, \quad \forall n \in \mathbb{N} .
$$

Hint. Use the Baire category theorem and the Banach-Steinhaus theorem.
Solution. Assume by contradiction that for every $x \in X$ there exists $n \in \mathbb{N}$ such that

$$
\sup _{T \in G_{n}}\|T x\|_{Y_{n}}<+\infty
$$

Hence, we can write

$$
X=\bigcup_{n \in \mathbb{N}} A_{n} \quad \text { with } \quad A_{n}:=\left\{x \in X \text { s.t. } \sup _{T \in G_{n}}\|T x\|_{Y_{n}}<+\infty\right\}, \forall n \in \mathbb{N} \text {. }
$$

Notice that X would be meagre if all the $A_{n}, n \in \mathbb{N}$, were meagre. Since X is not meagre by the Baire category theorem, we have that there exists $N \in \mathbb{N}$ such that A_{N} is not meagre. Notice that

$$
A_{N}:=\bigcup_{k \in \mathbb{N}} C_{k} \quad \text { with } \quad C_{k}:=\left\{x \in X \text { s.t. } \sup _{T \in G_{N}}\|T x\|_{Y_{N}} \leq k\right\}, \forall k \in \mathbb{N} .
$$

Since $G_{N} \in L\left(X, Y_{N}\right)$, we have that C_{k} is closed for every $k \in \mathbb{N}$. together with the fact that A_{N} is not meagre, this implies that there exists $K \in \mathbb{N}$ such that $C_{K}^{\circ} \neq \emptyset$. That is,

Prof. P. Hintz
Assistant: R. Caniato

Functional Analysis I Exercise Sheet 4

there exist $x \in X$ and $\varepsilon \in(0,+\infty)$ such that $\left\{y \in X\right.$ s.t. $\left.\|y-x\|_{X}<\varepsilon\right\} \subset C_{K}$. This implies that for every $y \in X$ with $\|y\|_{X} \leq 1$ we have

$$
\begin{aligned}
\|T y\|_{Y_{N}} & =\frac{2}{\varepsilon}\left\|T\left(x+\frac{\varepsilon}{2} y-x\right)\right\|_{Y_{N}} \\
& \leq \frac{2}{\varepsilon}\left(\left\|T\left(x+\frac{\varepsilon}{2} y\right)\right\|_{Y_{N}}+\|T(x)\|_{Y_{N}}\right) \leq \frac{4 K}{\varepsilon}, \quad \forall T \in G_{N} .
\end{aligned}
$$

This contradict the hypothesis that G_{N} is unbounded and the statement follows.

Exercise 4.3 Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ and $\left(Z,\|\cdot\|_{Z}\right)$ be normed spaces. We consider the space $\left(X \times Y,\|\cdot\|_{X \times Y}\right)$, where $\|(x, y)\|_{X \times Y}=\|x\|_{X}+\|y\|_{Y}$ and a bilinear map $B: X \times Y \rightarrow Z$.
(a) Show that B is continuous if

$$
\exists C>0 \quad \forall(x, y) \in X \times Y: \quad\|B(x, y)\|_{Z} \leq C\|x\|_{X}\|y\|_{Y} .
$$

(b) Assume that $\left(X,\|\cdot\|_{X}\right)$ is Banach. Assume further that the maps

$$
\begin{array}{rlrl}
X & \rightarrow Z & Y & \rightarrow Z \\
x & \mapsto B\left(x, y^{\prime}\right) & y & \mapsto B\left(x^{\prime}, y\right)
\end{array}
$$

are continuous for every $x^{\prime} \in X$ and $y^{\prime} \in Y$. Prove that then B is continuous.
Hint. Part (b) uses the Banach-Steinhaus theorem.

Solution.

(a) Let $\left(\left(x_{k}, y_{k}\right)\right)_{k \in \mathbb{N}}$ be a sequence in $X \times Y$ converging to (x, y) in $\left(X \times Y,\|\cdot\|_{X \times Y}\right)$. By definition,

$$
\left\|x_{k}-x\right\|_{X}+\left\|y_{k}-y\right\|_{Y}=\left\|\left(x_{k}-x, y_{k}-y\right)\right\|_{X \times Y}=\left\|\left(x_{k}, y_{k}\right)-(x, y)\right\|_{X \times Y}
$$

which yields convergence $x_{k} \rightarrow x$ in X and $y_{k} \rightarrow y$ in Y. Since $B: X \times Y \rightarrow Z$ is bilinear, we have

$$
\begin{aligned}
\left\|B\left(x_{k}, y_{k}\right)-B(x, y)\right\|_{Z} & =\left\|B\left(x_{k}, y_{k}\right)-B\left(x, y_{k}\right)+B\left(x, y_{k}\right)-B(x, y)\right\|_{Z} \\
& =\left\|B\left(x_{k}-x, y_{k}\right)-B\left(x, y_{k}-y\right)\right\|_{Z} \\
& \leq\left\|B\left(x_{k}-x, y_{k}\right)\right\|_{Z}+\left\|B\left(x, y_{k}-y\right)\right\|_{Z}
\end{aligned}
$$

Using the assumption $\|B(x, y)\|_{Z} \leq C\|x\|_{X}\|y\|_{Y}$ and the fact that convergence of $\left(y_{k}\right)_{k \in \mathbb{N}}$ in $\left(Y,\|\cdot\|_{Y}\right)$ implies that $\left\|y_{k}\right\|_{Y}$ is bounded uniformly for all $k \in \mathbb{N}$, we conclude

$$
\left\|B\left(x_{k}, y_{k}\right)-B(x, y)\right\|_{Z} \leq C\left\|x-x_{k}\right\|_{X}\left\|y_{k}\right\|_{Y}+C\|x\|_{X}\left\|y-y_{k}\right\|_{Y} \xrightarrow{k \rightarrow \infty} 0 .
$$

(b) Let $B_{1}^{Y} \subset Y$ be the unit ball around the origin in $\left(Y,\|\cdot\|_{Y}\right)$. For every $x \in X$ we have by assumption

$$
\sup _{y^{\prime} \in B_{1}^{Y}}\left\|B\left(x, y^{\prime}\right)\right\|_{Z} \leq \sup _{y^{\prime} \in B_{1}^{Y}}\left\|y^{\prime}\right\|_{Y}\|B(x, \cdot)\|_{L(Y, Z)} \leq\|B(x, \cdot)\|_{L(Y, Z)}<\infty,
$$

which means that the maps $\left(B\left(\cdot, y^{\prime}\right)\right)_{y^{\prime} \in B_{1}^{Y}} \in L(X, Z)$ are pointwise bounded. Since X is assumed to be complete, the Theorem of Banach-Steinhaus implies that $\left(B\left(\cdot, y^{\prime}\right)\right)_{y^{\prime} \in B_{1}^{Y}} \in L(X, Z)$ are uniformly bounded, i. e.

$$
C:=\sup _{y^{\prime} \in B_{1}^{Y}}\left\|B\left(\cdot, y^{\prime}\right)\right\|_{L(X, Z)}<\infty
$$

From this we conclude

$$
\begin{aligned}
\|B(x, y)\|_{Z} & =\|y\|_{Y}\left\|B\left(x, \frac{y}{\|y\|_{Y}}\right)\right\|_{Z} \\
& \leq\|y\|_{Y}\|x\|_{X}\left\|B\left(\cdot, \frac{y}{\|y\|_{Y}}\right)\right\|_{L(X, Z)} \leq C\|x\|_{X}\|y\|_{Y}
\end{aligned}
$$

so B is continuous by (a).

Exercise 4.4 Let $\mathbb{D}:=\{z \in \mathbb{C}$ s.t. $|z|<1\} \subset \mathbb{C}$ and let
$\mathcal{H}^{2}(\mathbb{D}):=\left\{f: \mathbb{D} \rightarrow \mathbb{C}\right.$ s.t. f is holomorphic with $\left.\sup _{0 \leq r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{2} d t<+\infty\right\}$.
(a) Derive a characterization of all the functions $f \in \mathcal{H}^{2}(\mathbb{D})$ in terms of the coefficients $\left(a_{k}(f)\right)_{k \in \mathbb{N}} \subset \mathbb{C}$ of their power series expansion, i.e. those coefficients for which

$$
f(z)=\sum_{k=0}^{+\infty} a_{k}(f) z^{k}, \quad \forall z \in \mathbb{D}
$$

(b) Prove that, for every $f, g \in \mathcal{H}^{2}(\mathbb{D})$, the limit

$$
\langle f, g\rangle:=\frac{1}{2 \pi} \lim _{r \rightarrow 1^{-}} \int_{0}^{2 \pi} f\left(r e^{i t}\right) \overline{g\left(r e^{i t}\right)} d t
$$

exists and express it in terms of the coefficients $\left(a_{k}(f)\right)_{k \in \mathbb{N}},\left(a_{k}(g)\right)_{k \in \mathbb{N}} \subset \mathbb{C}$ of their power series expansions.
(c) Prove that $\left(\mathcal{H}^{2}(\mathbb{D}),\langle\cdot, \cdot\rangle\right)$ is a Hilbert space with $\left(\mathbb{D} \ni z \mapsto z^{n} \in \mathbb{C}\right)_{n \in \mathbb{N}}$ being an orthonormal basis.

Solution.

(a) From complex analysis, we know that for every $f \in \mathcal{H}^{2}(\mathbb{D})$

$$
f(z)=\sum_{k=0}^{+\infty} a_{k}(f) z^{k}, \quad \forall z \in \mathbb{D}
$$

the convergence radius is at least 1 and that the power series convergences locally uniformly to f. Thus, we obtain that for all $r \in(0,1)$ that

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{2} d t & =\int_{0}^{2 \pi} \sum_{k, l=0}^{+\infty} a_{k}(f) \overline{a_{l}(f)} r^{k+l} e^{i(k-l) t} d t \\
& =2 \pi \sum_{k, l=0}^{+\infty} a_{k}(f) \overline{a_{l}(f)} r^{k+l} \delta_{k l}=2 \pi \sum_{k=0}^{+\infty}\left|a_{k}(f)\right|^{2} r^{2 k}
\end{aligned}
$$

Hence, $f \in \mathcal{H}^{2}(\mathbb{D})$ if and only if $\left(a_{k}(f)\right)_{k \in \mathbb{N}} \in \ell^{2}(\mathbb{N}, \mathbb{C})$.
(b) By similar calculations and arguments as above, for every $f, g \in \mathcal{H}^{2}(\mathbb{D})$ and for every $r \in(0,1)$ we have that

$$
\begin{aligned}
\int_{0}^{2 \pi} f\left(r e^{i t}\right) \overline{g\left(r e^{i t}\right)} d t & =\int_{0}^{2 \pi} \sum_{k, l=0}^{+\infty} a_{k}(f) \overline{a_{l}(g)} r^{k+l} e^{i(k-l) t} d t \\
& =2 \pi \sum_{k, l=0}^{+\infty} a_{k}(f) \overline{a_{l}(g)} r^{k+l} \delta_{k l}=2 \pi \sum_{k=0}^{+\infty} a_{k}(f) \overline{a_{l}(g)} r^{2 k}
\end{aligned}
$$

Since $\left(a_{k}(f)\right)_{k \in \mathbb{N}},\left(a_{k}(g)\right)_{k \in \mathbb{N}} \in \ell^{2}(\mathbb{N}, \mathbb{C})$ by (a), by Cauchy-Schwartz and dominated convergence we get that

$$
\langle f, g\rangle=\lim _{r \rightarrow 1^{-1}} \sum_{k=0}^{+\infty} a_{k}(f) \overline{a_{l}(g)} r^{2 k}=\sum_{k=0}^{+\infty} a_{k}(f) \overline{a_{l}(g)} .
$$

(c) Exercises (a) and (b) above show that $\left(\mathcal{H}^{2}(\mathbb{D}),\langle\cdot, \cdot\rangle\right)$ is isometrically isomorphic to $\ell^{2}(\mathbb{N}, \mathbb{C})$. Hence, $\left(\mathcal{H}^{2}(\mathbb{D}),\langle\cdot, \cdot\rangle\right)$ is a Hilbert space. Moreover, since $\left(e^{(k)}\right)_{k \in \mathbb{N}}$ given by $e_{n}^{(k)}:=\delta_{n k}(n, k \in \mathbb{N})$ is an orthonormal basis of $\ell^{2}(\mathbb{N}, \mathbb{C})$ which corresponds to $\left(\mathbb{D} \ni z \mapsto z^{n} \in \mathbb{C}\right)_{n \in \mathbb{N}}$ through the given isometric isomorphism, the statement follows.

[^0]: Last modified: 21 October 2022

