Exercise 5.1 Let *H* be a Hilbert space, and let $A: H \to H$ be a bounded linear map.

- (a) Let $y \in H$. Show that there exists a unique $z \in H$ so that (Ax, y) = (x, z) for all $x \in H$.
- (b) We define the *adjoint operator* A^* of A by setting $A^*y = z$ for $y \in H$ and z as in part (a). Show that $A^* \colon H \to H$ is a bounded linear operator.
- (c) Prove that $||A^*||_{L(H)} = ||A||_{L(H)}$.
- (d) Show that $(\operatorname{ran}(A))^{\perp} = \ker(A^*)$.

Exercise 5.2 Let H be a real Hilbert space. Let $a: H \times H \to \mathbb{R}$ be bilinear and continuous; let $\Lambda \geq 0$ be such that $|a(x,y)| \leq \Lambda ||x||_H ||y||_H$ for all $x, y \in H$. Suppose that a is *coercive*, i.e. there exists $\lambda > 0$ so that $a(x, x) \geq \lambda ||x||_H^2$ for all $x \in H$.

- (a) Let $x \in H$. Show that there exists a unique vector $z \in H$ so that a(x, y) = (z, y) for all $y \in H$.
- (b) Define a map $A: H \to H$ by $x \mapsto z$, and show that A is linear and bounded with $||A||_{L(H)} \leq \Lambda$.
- (c) Prove that A is injective.

Hint. Estimate (Ax, x) using the coercivity of a.

- (d) Show that ran(A) = A(H) is closed.
- (e) Show that A is surjective.

Hint. Notice that A^* is injective and use exercise 5.1-(d).

(f) Show that $A^{-1} \in L(H)$, and prove $||A^{-1}|| \le \lambda^{-1}$.

Exercise 5.3 The right-shift map $S: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ on the space $\ell^2(\mathbb{N})$ is given by

$$S((x_0, x_1, x_2, \dots)) := (0, x_0, x_1, \dots), \qquad \forall (x_0, x_1, x_2, \dots) \in \ell^2(\mathbb{N}).$$

- (a) Show that the map S is a continuous linear operator with norm ||S|| = 1.
- (b) Show that $S \lambda I$ is invertible for all $\lambda \in \mathbb{C}$ with $|\lambda| > 1$.

Last modified: 22 October 2022

(c) Show that $S - \lambda I$ is injective for all $\lambda \in \mathbb{C}$. Show that the range of $S - \lambda I$ is not dense for $|\lambda| < 1$ whilst $S - \lambda I$ has dense range but it is not surjective for $|\lambda| = 1$.

Hint. For the dense range properties, use exercise 5.1-(d). For the failure of surjectivity, consider the sequence $\{y_k\}_{k\in\mathbb{N}} \in \ell^2(\mathbb{N})$ given by $y_k := \lambda^{-k}(k+1)^{-1}$ for every $k \in \mathbb{N}$.

(d) Show that S has a left inverse in the sense that there exists an operator $T : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ such that $T \circ S = I$. Check that $S \circ T \neq I$.

Exercise 5.4 Define a map $T \colon C^0([0,1]) \to (L^1([0,1]))^*$ by

$$(Tu)(v) = \int_0^1 u(x)v(x) \, \mathrm{d}x \qquad \forall \, u \in C^0([0,1]), \, v \in L^1([0,1]).$$

- (a) Show that T is continuous and injective.
- (b) Show that $||T||_{L(C^0,(L^1)^*)} = 1$.
- (c) Show that the range of T is closed, but not dense.