Exercise 5.1 Let H be a Hilbert space, and let $A: H \rightarrow H$ be a bounded linear map.
(a) Let $y \in H$. Show that there exists a unique $z \in H$ so that $(A x, y)=(x, z)$ for all $x \in H$.
(b) We define the adjoint operator A^{*} of A by setting $A^{*} y=z$ for $y \in H$ and z as in part (a). Show that $A^{*}: H \rightarrow H$ is a bounded linear operator.
(c) Prove that $\left\|A^{*}\right\|_{L(H)}=\|A\|_{L(H)}$.
(d) Show that $(\operatorname{ran}(A))^{\perp}=\operatorname{ker}\left(A^{*}\right)$.

Exercise 5.2 Let H be a real Hilbert space. Let $a: H \times H \rightarrow \mathbb{R}$ be bilinear and continuous; let $\Lambda \geq 0$ be such that $|a(x, y)| \leq \Lambda\|x\|_{H}\|y\|_{H}$ for all $x, y \in H$. Suppose that a is coercive, i.e. there exists $\lambda>0$ so that $a(x, x) \geq \lambda\|x\|_{H}^{2}$ for all $x \in H$.
(a) Let $x \in H$. Show that there exists a unique vector $z \in H$ so that $a(x, y)=(z, y)$ for all $y \in H$.
(b) Define a map $A: H \rightarrow H$ by $x \mapsto z$, and show that A is linear and bounded with $\|A\|_{L(H)} \leq \Lambda$.
(c) Prove that A is injective.

Hint. Estimate ($A x, x$) using the coercivity of a.
(d) Show that $\operatorname{ran}(A)=A(H)$ is closed.
(e) Show that A is surjective.

Hint. Notice that A^{*} is injective and use exercise 5.1-(d).
(f) Show that $A^{-1} \in L(H)$, and prove $\left\|A^{-1}\right\| \leq \lambda^{-1}$.

Exercise 5.3 The right-shift map $S: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ on the space $\ell^{2}(\mathbb{N})$ is given by

$$
S\left(\left(x_{0}, x_{1}, x_{2}, \ldots\right)\right):=\left(0, x_{0}, x_{1}, \ldots\right), \quad \forall\left(x_{0}, x_{1}, x_{2}, \ldots\right) \in \ell^{2}(\mathbb{N}) .
$$

(a) Show that that the map S is a continuous linear operator with norm $\|S\|=1$.
(b) Show that $S-\lambda I$ is invertible for all $\lambda \in \mathbb{C}$ with $|\lambda|>1$.

[^0](c) Show that $S-\lambda I$ is injective for all $\lambda \in \mathbb{C}$. Show that the range of $S-\lambda I$ is not dense for $|\lambda|<1$ whilst $S-\lambda I$ has dense range but it is not surjective for $|\lambda|=1$.

Hint. For the dense range properties, use exercise 5.1-(d). For the failure of surjectivity, consider the sequence $\left\{y_{k}\right\}_{k \in \mathbb{N}} \in \ell^{2}(\mathbb{N})$ given by $y_{k}:=\lambda^{-k}(k+1)^{-1}$ for every $k \in \mathbb{N}$.
(d) Show that S has a left inverse in the sense that there exists an operator $T: \ell^{2}(\mathbb{N}) \rightarrow$ $\ell^{2}(\mathbb{N})$ such that $T \circ S=I$. Check that $S \circ T \neq I$.

Exercise 5.4 Define a map $T: C^{0}([0,1]) \rightarrow\left(L^{1}([0,1])\right)^{*}$ by

$$
(T u)(v)=\int_{0}^{1} u(x) v(x) \mathrm{d} x \quad \forall u \in C^{0}([0,1]), v \in L^{1}([0,1])
$$

(a) Show that T is continuous and injective.
(b) Show that $\|T\|_{L\left(C^{0},\left(L^{1}\right)^{*}\right)}=1$.
(c) Show that the range of T is closed, but not dense.

[^0]: Last modified: 22 October 2022

