Exercise 5.1 Let *H* be a Hilbert space, and let $A: H \to H$ be a bounded linear map.

- (a) Let $y \in H$. Show that there exists a unique $z \in H$ so that (Ax, y) = (x, z) for all $x \in H$.
- (b) We define the *adjoint operator* A^* of A by setting $A^*y = z$ for $y \in H$ and z as in part (a). Show that $A^* \colon H \to H$ is a bounded linear operator.
- (c) Prove that $||A^*||_{L(H)} = ||A||_{L(H)}$.
- (d) Show that $(\operatorname{ran}(A))^{\perp} = \ker(A^*)$.

Solution.

(a) Let $y \in H$ and consider the linear functional $\lambda_y : H \to \mathbb{R}$ given by

$$\lambda_y(x) := (Ax, y), \qquad \forall x \in H.$$

Notice that $\lambda_y \in H^*$ with $\|\lambda_y\|_{H^*} \leq \|A\|_{L(H)} \|y\|_{H}$. Indeed, by Cauchy-Schwarz inequality and since A is bounded, we have

$$|\lambda_y(x)| = |(Ax, y)| \le ||Ax||_H ||y||_H \le (||A||_{L(H)} ||y||_H) ||x||_H, \qquad \forall x \in H.$$

Thus, by Riesz representation theorem there exists a unique $z \in H$ such that

$$(Ax, y) = \lambda_y(x) = (x, z), \qquad \forall x \in H.$$

(b) A straightforward computation shows that A^* is linear. Moreover,

$$\|A^*y\|_H = \|z\|_H = \sup_{\substack{x \in H \\ \|x\|_H \le 1}} |(x, z)| = \sup_{\substack{x \in H \\ \|x\|_H \le 1}} |\lambda_y(x)| = \|\lambda_y\|_{H^*} \le \|A\|_{L(H)} \|y\|_H,$$

for every $y \in H$. Hence, A^* is bounded with $||A^*||_{L(H)} \leq ||A||_{L(H)}$.

(c) We are just left to show that $||A^*||_{L(H)} \ge ||A||_{L(H)}$. By definition and Cauchy-Schwarz inequality, for every $x \in H$ we have

$$||Ax||_{H}^{2} = |(Ax, Ax)| = |(x, A^{*}(Ax))| \le ||x||_{H} ||A^{*}||_{L(H)} ||Ax||_{H},$$

which implies

$$||Ax||_{H} = |(Ax, Ax)| = |(x, A^{*}(Ax))| \le ||A^{*}||_{L(H)} ||x||_{H}.$$

The statement follows.

Last modified: 28 October 2022

(d) Let $x \in H$, Then $y \in (\operatorname{ran}(A))^{\perp}$ if and only if $(Ax, y) = (x, A^*y) = 0$ for every $x \in H$. On the other hand, $(x, A^*y) = 0$ for every $x \in H$ if and only if $y \in \ker(A^*)$. The statement follows.

Exercise 5.2 Let H be a real Hilbert space. Let $a: H \times H \to \mathbb{R}$ be bilinear and continuous; let $\Lambda \geq 0$ be such that $|a(x,y)| \leq \Lambda ||x||_H ||y||_H$ for all $x, y \in H$. Suppose that a is *coercive*, i.e. there exists $\lambda > 0$ so that $a(x, x) \geq \lambda ||x||_H^2$ for all $x \in H$.

- (a) Let $x \in H$. Show that there exists a unique vector $z \in H$ so that a(x, y) = (z, y) for all $y \in H$.
- (b) Define a map $A: H \to H$ by $x \mapsto z$, and show that A is linear and bounded with $||A||_{L(H)} \leq \Lambda$.
- (c) Prove that A is injective.

Hint. Estimate (Ax, x) using the coercivity of a.

- (d) Show that ran(A) = A(H) is closed.
- (e) Show that A is surjective.

Hint. Notice that A^* is injective and use exercise 5.1-(d).

(f) Show that $A^{-1} \in L(H)$, and prove $||A^{-1}|| \leq \lambda^{-1}$.

Solution.

(a) Fix any $x \in H$ and consider the functional $\lambda_x : H \to \mathbb{R}$ given by

$$\lambda_x(y) := a(x, y), \forall y \in H.$$

Notice that

$$|\lambda_x(y)| = |a(x,y)| \le (\Lambda ||x||_H) ||y||_H, \qquad \forall y \in H.$$

This implies that $\lambda_x \in H^*$ with $\|\lambda_x\|_{H^*} \leq \Lambda \|x\|_H$. By Riesz representation theorem, there exists a unique $z \in H$ with $\|z\|_H = \|\lambda_x\|_{H^*} \leq \Lambda \|x\|_H$ such that

$$a(x,y) = \lambda_x(y) = (z,y) \quad \forall y \in H.$$

(b) It is clear that

$$||Ax||_H = ||z||_H \le \Lambda ||x||_H, \qquad \forall x \in H.$$

This implies that $A \in L(H)$ with $||A||_{L(H)} \leq \Lambda$.

(c) Notice that

$$(Ax, x) = (z, x) = a(x, x) \ge \lambda ||x||_{H}^{2}, \qquad \forall x \in H.$$

Hence Ax = 0 implies x = 0 and the injectivity of A is proved.

(d) Notice that

$$||Ax||_H ||x||_H \ge (Ax, x) \ge \lambda ||x||_H^2, \qquad \forall x \in H,$$

which implies

$$||Ax||_H \ge \lambda ||x||_H, \qquad \forall x \in H.$$
(1)

Now pick any sequence $\{Ax_k\}_{k\in\mathbb{N}}\subset \operatorname{ran}(A)$ such that $Ax_k \to y \in H$. Since $\{Ax_k\}_{k\in\mathbb{N}}$ si Cauchy, by linearity and the estimate (1) we conclude that $\{x_k\}_{k\in\mathbb{N}}$ is Cauchy. Since H is complete, we have that there exists $X \in H$ such that $x_k \to x$. By the continuity of A and uniqueness of the limit, we have Ax = y and we have proved that $\operatorname{ran}(A)$ is closed.

(e) Notice that A^* is injective. This follows because by estimate (1) it holds that

 $(x, A^*x) = (Ax, x) \ge \lambda \|x\|_H^2, \qquad \forall x \in H.$

Then, by exercise 5.1-(d) we have $(\operatorname{ran}(A))^{\perp} = \ker(A^*) = \{0\}$ and we get $\overline{\operatorname{ran}(A)} = H$. But by the previous point we know that $\operatorname{ran}(A)$ is closed and the statement follows.

(f) Since $A \in L(H)$ is bijective and H is complete, we conclude that A has a continuous inverse $A^{-1} \in L(H)$. In order to estimate the norm of A^{-1} , we compute

$$\lambda \|A^{-1}x\|_{H} \le \|A(A^{-1}x)\|_{H} = \|x\|_{H}, \qquad \forall x \in H.$$

This implies that $||A^{-1}x||_H \leq \lambda^{-1} ||x||_H$ for every $x \in H$ and the statement follows.

Exercise 5.3 The right-shift map $S: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ on the space $\ell^2(\mathbb{N})$ is given by

$$S((x_0, x_1, x_2, \dots)) := (0, x_0, x_1, \dots), \qquad \forall (x_0, x_1, x_2, \dots) \in \ell^2(\mathbb{N}).$$

- (a) Show that the map S is a continuous linear operator with norm ||S|| = 1.
- (b) Show that $S \lambda I$ is invertible for all $\lambda \in \mathbb{C}$ with $|\lambda| > 1$.
- (c) Show that $S \lambda I$ is injective for all $\lambda \in \mathbb{C}$. Show that the range of $S \lambda I$ is not dense for $|\lambda| < 1$ whilst $S \lambda I$ has dense range but it is not surjective for $|\lambda| = 1$.

Hint. For the dense range properties, use exercise 5.1-(d). For the failure of surjectivity, consider the sequence $\{y_k\}_{k\in\mathbb{N}} \in \ell^2(\mathbb{N})$ given by $y_k := \lambda^{-k}(k+1)^{-1}$ for every $k \in \mathbb{N}$.

(d) Show that S has a left inverse in the sense that there exists an operator $T : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ such that $T \circ S = I$. Check that $S \circ T \neq I$.

Solution.

(a) We notice that

$$||S((x_0, x_1, x_2, \dots))||_{\ell^2}^2 = 0^2 + \sum_{n=0}^{+\infty} |x_k|^2 = ||(x_0, x_1, x_2, \dots)||_{\ell^2}^2,$$

for every $(x_0, x_1, x_2, \dots) \in \ell^2(\mathbb{N})$. Hence, S is an isometry and the statement follows.

(b) Fix any $\lambda \in \mathbb{C}$ such that $|\lambda| > 1$. We want to show that the equation

$$(y_0, y_1, y_2, \dots) = (S - \lambda I)((x_0, x_1, x_2, \dots)) = (-\lambda x_0, x_0 - \lambda x_1, x_1 - \lambda x_2, \dots)$$
(2)

has a unique solution $(x_0, x_1, x_2, ...) \in \ell^2(\mathbb{N})$ for every given $(y_0, y_1, y_2, ...) \in \ell^2(\mathbb{N})$. Equation (2) implies

$$\begin{cases} x_0 &= -\lambda^{-1}y_0 \\ x_1 &= \lambda^{-1}(x_0 - y_1) = \lambda^{-2}y_0 - \lambda^{-1}y_1 \\ x_2 &= \lambda^{-1}(x_1 - y_2) = \lambda^{-3}y_0 - \lambda^{-2}y_1 - \lambda^{-1}y_2 \\ \vdots \end{cases}$$

Therefore, the unique sequence $(x_0, x_1, x_2, ...)$ that solves equation (2) is given by

$$x_{k} := \sum_{j=0}^{k} \lambda^{-(k-j+1)} y_{j} = \lambda^{-1} \sum_{j=0}^{k} \lambda^{-(k-j)} y_{j}, \qquad \forall k \in \mathbb{N}.$$
 (3)

We are just left to show that $(x_0, x_1, x_2, ...) \in \ell^2$ (and this is where the hypothesis on λ is needed). Indeed, since $|\lambda| > 1$, we have that

$$\begin{split} \sum_{k=0}^{+\infty} |x_k|^2 &= \sum_{k=0}^{+\infty} \left| \lambda^{-1} \sum_{j=0}^k \lambda^{-(k-j)} y_j \right|^2 \le |\lambda|^{-2} \sum_{k=0}^{+\infty} \left(\sum_{j=0}^k |\lambda^{-(k-j)}| |y_j| \right)^2 \\ &\le |\lambda|^{-2} \sum_{k=0}^{+\infty} \left(\sum_{j=0}^k |\lambda^{-(k-j)}|^2 \sum_{j=0}^k |y_j|^2 \right) \le |\lambda|^{-2} \sum_{j=0}^{+\infty} |y_j|^2 \sum_{k=0}^{+\infty} \sum_{j=0}^k |\lambda^{-(k-j)}|^2 \\ &= |\lambda|^{-2} \| (y_0, y_1, y_2, \dots) \|_{\ell^2} \sum_{k=0}^{+\infty} (k+1) |\lambda|^{-2k} < +\infty. \end{split}$$

(c) First, we show that $S - \lambda I$ is injective for every $\lambda \in \mathbb{C}$. If $\lambda = 0$, then clearly Sx = 0 implies x = 0 (recall that S is an isometry) and the statement is proved. If $\lambda \neq 0$, the same computation that we have made in point (b) leads to conclude that $(S - \lambda I)x = 0$ forces x = 0 for general $\lambda \in \mathbb{C} \setminus \{0\}$ and we are done.

Second, we notice that $\overline{\operatorname{ran}(S - \lambda I)} = \ell^2(\mathbb{N})$ if and only if $(\operatorname{ran}(S - \lambda I))^{\perp} = \{0\}$. By exercise 5.1-(d), we have $(\operatorname{ran}(S - \lambda I))^{\perp} = \ker(S^* - \overline{\lambda}I)$. Let $T : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be given by

$$T((x_0, x_1, x_2, \dots)) := (x_1, x_2, x_3, \dots), \qquad \forall (x_0, x_1, x_2, \dots) \in \ell^2(\mathbb{N}).$$

Notice that $S^* = T$. Hence, we are left to study $\ker(T - \overline{\lambda}I)$ to understand if $S - \lambda I$ has dense range. We want to solve the equation $(T - \overline{\lambda}I)((x_0, x_1, x_2, \dots)) = 0$, which leads to

$$x_k := \overline{\lambda}^k x_0, \qquad \forall k \in \mathbb{N}.$$

Such solutions belong to $\ell^2(\mathbb{N})$ if and only if $|\overline{\lambda}| = |\lambda| < 1$, in which case we obtain $\ker(L - \overline{\lambda}I) = \operatorname{span}_{\mathbb{C}}\{(1, \overline{\lambda}, \overline{\lambda}^2, \dots)\} \neq \{0\}$. Otherwise, we have $\ker(L - \overline{\lambda}I) = \{0\}$. We conclude that if $|\lambda| < 1$ then the range of $S - \lambda I$ is not dense in $\ell^2(\mathbb{N})$ whilst for $|\lambda| = 1$ we get that $S - \lambda I$ has dense range.

In order to prove that even in case $|\lambda| = 1$ we have $\operatorname{ran}(S - \lambda I) \neq \ell^2(\mathbb{N})$, consider the sequence $\{y_k\}_{k \in \mathbb{N}} \in \ell^2(\mathbb{N})$ given by $y_k := \lambda^{-k}(k+1)^{-1}$ for every $k \in \mathbb{N}$. Then, if we try to solve the equation $(S - \lambda I)((x_0, x_1, x_2, \dots)) = (y_0, y_1, y_2, \dots)$ we get

$$\begin{cases} x_0 &= -\lambda^{-1} \\ x_1 &= \lambda^{-1}(x_0 - y_1) = -\lambda^{-2}(1 + 2^{-1}) \\ x_2 &= \lambda^{-1}(x_1 - y_2) = -\lambda^{-3}(1 + 2^{-1} + 3^{-1}) \\ \vdots \end{cases}$$

But the solution given by the previous equation does not belong to ℓ^2 because

$$\sum_{k=0}^{+\infty} |x_k|^2 = \sum_{k=0}^{+\infty} \left| \sum_{j=0}^k \frac{1}{j+1} \right|^2 \ge \sum_{k=0}^{+\infty} 1 = +\infty.$$

The statement follows.

(d) It is straightforward to check that $T \circ S = I$. Nevertheless, we have that

$$(S \circ T)((x_0, x_1, x_2, \dots)) = S((x_1, x_2, x_3, \dots)) = (0, x_1, x_2, \dots) \neq (x_0, x_1, x_2, \dots)$$

for every $(x_0, x_1, x_2, \dots) \in \ell^2(\mathbb{N})$ such that $x_0 \neq 0$. The statement follows.

Exercise 5.4 Define a map $T: C^0([0,1]) \to (L^1([0,1]))^*$ by

$$(Tu)(v) = \int_0^1 u(x)v(x) \, \mathrm{d}x \qquad \forall \, u \in C^0([0,1]), \, v \in L^1([0,1]).$$

- (a) Show that T is continuous and injective.
- (b) Show that $||T||_{L(C^0, (L^1)^*)} = 1$.
- (c) Show that the range of T is closed, but not dense.

Solution.

(a) We estimate

$$|(Tu)(v)| \le \int_0^1 |u(x)| |v(x)| \, dx \le ||u||_{C^0} ||v||_{L^1},$$

for every $u \in C^0([0,1])$, $v \in L^1([0,1])$. It follows that $||Tu||_{(L^1)^*} \leq ||u||_{C^0}$, for every $u \in C^0([0,1])$ and this suffices to prove that T is continuous.

To show injectivity, we assume that $u \in C^0([0, 1])$ and we assume that Tu = 0. Since $u \in L^1([0, 1])$, we have that

$$0 = (Tu)(u) = \int_0^1 |u(x)|^2 \, dx,$$

which implies u = 0 a.e. on [0, 1]. By continuity of u we get u = 0 on the whole interval [0, 1].

(b) Again, notice that $u \in L^1([0,1])$ and $||u||_{L^1} \leq ||u||_{C^0}$, for every $u \in C^0([0,1])$. By Hölder inequality, we have that

$$||Tu||_{(L^1)^*} \frac{||u||_{L^1}}{||u||_{C^0}} \ge |(Tu)(u)| = \int_0^1 |u(x)|^2 \, dx \ge ||u||_{L^1}$$

which implies $||Tu||_{(L^1)^*} \ge ||u||_{C^0}$, for every $u \in C^0([0,1])$. The statement follows. Nevertheless, by point (a), we know that $||Tu||_{(L^1)^*} \le ||u||_{C^0}$, for every $u \in C^0([0,1])$. Hence, we obtain that $||Tu||_{(L^1)^*} = ||u||_{C^0}$, for every $u \in C^0([0,1])$ and the statement follows.

(c) First, we show that ran(T) is closed. Pick any sequence $\{Tu_k\}_{k\in\mathbb{N}} \subset \operatorname{ran}(T)$ such that $Tu_k \to \lambda$ in $(L^1([0,1]))^*$. Then, since T is an isometry, we have

$$||u_k - u_h||_{C^0} = ||T(u_k - u_h)||_{(L^1)^*} = ||Tu_k - Tu_h||_{(L^1)^*} \to 0^+$$

as $k, h \to +\infty$. We conclude that $\{u_k\}_{k\in\mathbb{N}}$ is a Cauchy sequence in $C^0([0,1])$. Since $C^0([0,1])$ is complete, there exists $u \in C^0([0,1])$ such that $u_k \to u$ in $C^0([0,1])$. We claim that $Tu = \lambda$. Indeed, by uniform convergence of the u_k to u, we get

$$\lambda(v) = \lim_{k \to +\infty} (Tu_k)(v) = \lim_{k \to +\infty} \int_0^1 u_k(x)v(x) \, dx = \int_0^1 u(x)v(x) \, dx = (Tu)(v),$$

for every $v \in L^1([0,1])$. Hence, $\lambda = Tu \in ran(T)$ and the closure of ran(T) is proved.

Now assume by contradiction that $\operatorname{ran}(T)$ is not dense in $(L^1([0,1]))^*$. Then, since $\operatorname{ran}(T)$ is closed, we have $\operatorname{ran}(T) = (L^1([0,1]))^*$. Consider the functional $\xi : L^1([0,1]) \to \mathbb{R}$ given by

$$\xi(v) := \int_0^{\frac{1}{2}} v(x) \, dx, \qquad \forall v \in L^1([0,1]).$$

It is straightforward that $\xi \in (L^1([0,1]))^*$. We claim that $\xi \notin \operatorname{ran}(T)$, which would produce a contradiction. Indeed, assume that there exists $u \in C^0([0,1])$ such that

$$\int_0^{\frac{1}{2}} v(x) \, dx = \xi(v) = (Tu)(v) = \int_0^1 u(x)v(x) \, dx, \qquad \forall v \in L^1([0,1]).$$

This implies

$$\int_0^1 (u(x) - \chi_{[0,\frac{1}{2}]}) v(x) \, dx = 0, \qquad \forall v \in L^1([0,1]),$$

where $\chi_{[0,\frac{1}{2}]}$ denotes the indicator function of the interval $[0,\frac{1}{2}]$. By the fundamental lemma of calculus of variations this implies that $u = \chi_{[0,\frac{1}{2}]}$ a.e. on [0,1] and this contradicts the continuity of u.