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Exercise 5.1 Let H be a Hilbert space, and let A : H → H be a bounded linear map.

(a) Let y ∈ H. Show that there exists a unique z ∈ H so that (Ax, y) = (x, z) for all
x ∈ H.

(b) We define the adjoint operator A∗ of A by setting A∗y = z for y ∈ H and z as in
part (a). Show that A∗ : H → H is a bounded linear operator.

(c) Prove that ∥A∗∥L(H) = ∥A∥L(H).

(d) Show that (ran(A))⊥ = ker(A∗).

Solution.

(a) Let y ∈ H and consider the linear functional λy : H → R given by

λy(x) := (Ax, y), ∀ x ∈ H.

Notice that λy ∈ H∗ with ∥λy∥H∗ ≤ ∥A∥L(H)∥y∥H . Indeed, by Cauchy-Schwarz
inequality and since A is bounded, we have

|λy(x)| = |(Ax, y)| ≤ ∥Ax∥H∥y∥H ≤ (∥A∥L(H)∥y∥H)∥x∥H , ∀ x ∈ H.

Thus, by Riesz representation theorem there exists a unique z ∈ H such that

(Ax, y) = λy(x) = (x, z), ∀ x ∈ H.

(b) A straightforward computation shows that A∗ is linear. Moreover,

∥A∗y∥H = ∥z∥H = sup
x∈H

∥x∥H≤1

|(x, z)| = sup
x∈H

∥x∥H≤1

|λy(x)| = ∥λy∥H∗ ≤ ∥A∥L(H)∥y∥H ,

for every y ∈ H. Hence, A∗ is bounded with ∥A∗∥L(H) ≤ ∥A∥L(H).

(c) We are just left to show that ∥A∗∥L(H) ≥ ∥A∥L(H). By definition and Cauchy-Schwarz
inequality, for every x ∈ H we have

∥Ax∥2
H = |(Ax, Ax)| = |(x, A∗(Ax))| ≤ ∥x∥H∥A∗∥L(H)∥Ax∥H ,

which implies

∥Ax∥H = |(Ax, Ax)| = |(x, A∗(Ax))| ≤ ∥A∗∥L(H)∥x∥H .

The statement follows.
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(d) Let x ∈ H, Then y ∈ (ran(A))⊥ if and only if (Ax, y) = (x, A∗y) = 0 for every x ∈ H.
On the other hand, (x, A∗y) = 0 for every x ∈ H if and only if y ∈ ker(A∗). The
statement follows.

Exercise 5.2 Let H be a real Hilbert space. Let a : H × H → R be bilinear and
continuous; let Λ ≥ 0 be such that |a(x, y)| ≤ Λ∥x∥H∥y∥H for all x, y ∈ H. Suppose that
a is coercive, i.e. there exists λ > 0 so that a(x, x) ≥ λ∥x∥2

H for all x ∈ H.

(a) Let x ∈ H. Show that there exists a unique vector z ∈ H so that a(x, y) = (z, y) for
all y ∈ H.

(b) Define a map A : H → H by x 7→ z, and show that A is linear and bounded with
∥A∥L(H) ≤ Λ.

(c) Prove that A is injective.

Hint. Estimate (Ax, x) using the coercivity of a.

(d) Show that ran(A) = A(H) is closed.

(e) Show that A is surjective.

Hint. Notice that A∗ is injective and use exercise 5.1-(d).

(f) Show that A−1 ∈ L(H), and prove ∥A−1∥ ≤ λ−1.

Solution.

(a) Fix any x ∈ H and consider the functional λx : H → R given by

λx(y) := a(x, y), ∀ y ∈ H.

Notice that

|λx(y)| = |a(x, y)| ≤ (Λ∥x∥H)∥y∥H , ∀ y ∈ H.

This implies that λx ∈ H∗ with ∥λx∥H∗ ≤ Λ∥x∥H . By Riesz representation theorem,
there exists a unique z ∈ H with ∥z∥H = ∥λx∥H∗ ≤ Λ∥x∥H such that

a(x, y) = λx(y) = (z, y) ∀ y ∈ H.
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(b) It is clear that

∥Ax∥H = ∥z∥H ≤ Λ∥x∥H , ∀x ∈ H.

This implies that A ∈ L(H) with ∥A∥L(H) ≤ Λ.

(c) Notice that

(Ax, x) = (z, x) = a(x, x) ≥ λ∥x∥2
H , ∀ x ∈ H.

Hence Ax = 0 implies x = 0 and the injectivity of A is proved.

(d) Notice that

∥Ax∥H∥x∥H ≥ (Ax, x) ≥ λ∥x∥2
H , ∀ x ∈ H,

which implies

∥Ax∥H ≥ λ∥x∥H , ∀ x ∈ H. (1)

Now pick any sequence {Axk}k∈N ⊂ ran(A) such that Axk → y ∈ H. Since {Axk}k∈N
si Cauchy, by linearity and the estimate (1) we conclude that {xk}k∈N is Cauchy.
Since H is complete, we have that there exists X ∈ H such that xk → x. By the
continuity of A and uniqueness of the limit, we have Ax = y and we have proved
that ran(A) is closed.

(e) Notice that A∗ is injective. This follows because by estimate (1) it holds that

(x, A∗x) = (Ax, x) ≥ λ∥x∥2
H , ∀x ∈ H.

Then, by exercise 5.1-(d) we have (ran(A))⊥ = ker(A∗) = {0} and we get ran(A) = H.
But by the previous point we know that ran(A) is closed and the statement follows.

(f) Since A ∈ L(H) is bijective and H is complete, we conclude that A has a continuous
inverse A−1 ∈ L(H). In order to estimate the norm of A−1, we compute

λ∥A−1x∥H ≤ ∥A(A−1x)∥H = ∥x∥H , ∀ x ∈ H.

This implies that ∥A−1x∥H ≤ λ−1∥x∥H for every x ∈ H and the statement follows.

Exercise 5.3 The right-shift map S : ℓ2(N) → ℓ2(N) on the space ℓ2(N) is given by

S((x0, x1, x2, . . . )) := (0, x0, x1, . . . ), ∀ (x0, x1, x2, . . . ) ∈ ℓ2(N).
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(a) Show that that the map S is a continuous linear operator with norm ∥S∥ = 1.

(b) Show that S − λI is invertible for all λ ∈ C with |λ| > 1.

(c) Show that S − λI is injective for all λ ∈ C. Show that the range of S − λI is not
dense for |λ| < 1 whilst S − λI has dense range but it is not surjective for |λ| = 1.

Hint. For the dense range properties, use exercise 5.1-(d). For the failure of surjec-
tivity, consider the sequence {yk}k∈N ∈ ℓ2(N) given by yk := λ−k(k + 1)−1 for every
k ∈ N.

(d) Show that S has a left inverse in the sense that there exists an operator T : ℓ2(N) →
ℓ2(N) such that T ◦ S = I. Check that S ◦ T ̸= I.

Solution.

(a) We notice that

∥S((x0, x1, x2, . . . ))∥2
ℓ2 = 02 +

+∞∑
n=0

|xk|2 = ∥(x0, x1, x2, . . . )∥2
ℓ2 ,

for every (x0, x1, x2, . . . ) ∈ ℓ2(N). Hence, S is an isometry and the statement follows.

(b) Fix any λ ∈ C such that |λ| > 1. We want to show that the equation

(y0, y1, y2, . . . ) = (S − λI)((x0, x1, x2, . . . )) = (−λx0, x0 − λx1, x1 − λx2, . . . ) (2)

has a unique solution (x0, x1, x2, . . . ) ∈ ℓ2(N) for every given (y0, y1, y2, . . . ) ∈ ℓ2(N).
Equation (2) implies

x0 = −λ−1y0

x1 = λ−1(x0 − y1) = λ−2y0 − λ−1y1

x2 = λ−1(x1 − y2) = λ−3y0 − λ−2y1 − λ−1y2
...

Therefore, the unique sequence (x0, x1, x2, . . . ) that solves equation (2) is given by

xk :=
k∑

j=0
λ−(k−j+1)yj = λ−1

k∑
j=0

λ−(k−j)yj, ∀ k ∈ N. (3)
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We are just left to show that (x0, x1, x2, . . . ) ∈ ℓ2 (and this is where the hypothesis
on λ is needed). Indeed, since |λ| > 1, we have that

+∞∑
k=0

|xk|2 =
+∞∑
k=0

∣∣∣∣∣λ−1
k∑

j=0
λ−(k−j)yj

∣∣∣∣∣
2

≤ |λ|−2
+∞∑
k=0

(
k∑

j=0
|λ−(k−j)||yj|

)2

≤ |λ|−2
+∞∑
k=0

(
k∑

j=0
|λ−(k−j)|2

k∑
j=0

|yj|2
)

≤ |λ|−2
+∞∑
j=0

|yj|2
+∞∑
k=0

k∑
j=0

|λ−(k−j)|2

= |λ|−2∥(y0, y1, y2, . . . )∥ℓ2

+∞∑
k=0

(k + 1)|λ|−2k < +∞.

(c) First, we show that S − λI is injective for every λ ∈ C. If λ = 0, then clearly
Sx = 0 implies x = 0 (recall that S is an isometry) and the statement is proved. If
λ ̸= 0, the same computation that we have made in point (b) leads to conclude that
(S − λI)x = 0 forces x = 0 for general λ ∈ C∖ {0} and we are done.

Second, we notice that ran(S − λI) = ℓ2(N) if and only if (ran(S − λI))⊥ = {0}. By
exercise 5.1-(d), we have (ran(S − λI))⊥ = ker(S∗ − λI). Let T : ℓ2(N) → ℓ2(N) be
given by

T ((x0, x1, x2, . . . )) := (x1, x2, x3, . . . ), ∀ (x0, x1, x2, . . . ) ∈ ℓ2(N).

Notice that S∗ = T . Hence, we are left to study ker(T − λI) to understand if S − λI
has dense range. We want to solve the equation (T − λI)((x0, x1, x2, . . . )) = 0, which
leads to

xk := λ
k
x0, ∀k ∈ N.

Such solutions belong to ℓ2(N) if and only if |λ| = |λ| < 1, in which case we obtain
ker(L − λI) = spanC{(1, λ, λ

2
, . . . )} ̸= {0}. Otherwise, we have ker(L − λI) = {0}.

We conclude that if |λ| < 1 then the range of S − λI is not dense in ℓ2(N) whilst for
|λ| = 1 we get that S − λI has dense range.

In order to prove that even in case |λ| = 1 we have ran(S − λI) ̸= ℓ2(N), consider
the sequence {yk}k∈N ∈ ℓ2(N) given by yk := λ−k(k + 1)−1 for every k ∈ N. Then, if
we try to solve the equation (S − λI)((x0, x1, x2, . . . )) = (y0, y1, y2, . . . ) we get

x0 = −λ−1

x1 = λ−1(x0 − y1) = −λ−2(1 + 2−1)
x2 = λ−1(x1 − y2) = −λ−3(1 + 2−1 + 3−1)

...
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But the solution given by the previous equation does not belong to ℓ2 because

+∞∑
k=0

|xk|2 =
+∞∑
k=0

∣∣∣∣∣
k∑

j=0

1
j + 1

∣∣∣∣∣
2

≥
+∞∑
k=0

1 = +∞.

The statement follows.

(d) It is straightforward to check that T ◦ S = I. Nevertheless, we have that

(S ◦ T )((x0, x1, x2, . . . )) = S((x1, x2, x3, . . . )) = (0, x1, x2, . . . ) ̸= (x0, x1, x2, . . . )

for every (x0, x1, x2, . . . ) ∈ ℓ2(N) such that x0 ̸= 0. The statement follows.

Exercise 5.4 Define a map T : C0([0, 1]) → (L1([0, 1]))∗ by

(Tu)(v) =
∫ 1

0
u(x)v(x) dx ∀ u ∈ C0([0, 1]), v ∈ L1([0, 1]).

(a) Show that T is continuous and injective.

(b) Show that ∥T∥L(C0,(L1)∗) = 1.

(c) Show that the range of T is closed, but not dense.

Solution.

(a) We estimate

|(Tu)(v)| ≤
∫ 1

0
|u(x)||v(x)| dx ≤ ∥u∥C0∥v∥L1 ,

for every u ∈ C0([0, 1]), v ∈ L1([0, 1]). It follows that ∥Tu∥(L1)∗ ≤ ∥u∥C0 , for every
u ∈ C0([0, 1]) and this suffices to prove that T is continuous.

To show injectivity, we assume that u ∈ C0([0, 1]) and we assume that Tu = 0. Since
u ∈ L1([0, 1]), we have that

0 = (Tu)(u) =
∫ 1

0
|u(x)|2 dx,

which implies u = 0 a.e. on [0, 1]. By continuity of u we get u = 0 on th whole
interval [0, 1].
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(b) Again, notice that u ∈ L1([0, 1]) and ∥u∥L1 ≤ ∥u∥C0 , for every u ∈ C0([0, 1]). By
Hölder inequality, we have that

∥Tu∥(L1)∗
∥u∥L1

∥u∥C0
≥ |(Tu)(u)| =

∫ 1

0
|u(x)|2 dx ≥ ∥u∥L1

which implies ∥Tu∥(L1)∗ ≥ ∥u∥C0 , for every u ∈ C0([0, 1]). The statement follows.
Nevertheless, by point (a), we know that ∥Tu∥(L1)∗ ≤ ∥u∥C0 , for every u ∈ C0([0, 1]).
Hence, we obtain that ∥Tu∥(L1)∗ = ∥u∥C0 , for every u ∈ C0([0, 1]) and the statement
follows.

(c) First, we show that ran(T ) is closed. Pick any sequence {Tuk}k∈N ⊂ ran(T ) such
that Tuk → λ in (L1([0, 1]))∗. Then, since T is an isometry, we have

∥uk − uh∥C0 = ∥T (uk − uh)∥(L1)∗ = ∥Tuk − Tuh∥(L1)∗ → 0+

as k, h → +∞. We conclude that {uk}k∈N is a Cauchy sequence in C0([0, 1]). Since
C0([0, 1]) is complete, there exists u ∈ C0([0, 1]) such that uk → u in C0([0, 1]). We
claim that Tu = λ. Indeed, by uniform convergence of the uk to u, we get

λ(v) = lim
k→+∞

(Tuk)(v) = lim
k→+∞

∫ 1

0
uk(x)v(x) dx =

∫ 1

0
u(x)v(x) dx = (Tu)(v),

for every v ∈ L1([0, 1]). Hence, λ = Tu ∈ ran(T ) and the closure of ran(T ) is proved.

Now assume by contradiction that ran(T ) is not dense in (L1([0, 1]))∗. Then,
since ran(T ) is closed, we have ran(T ) = (L1([0, 1]))∗. Consider the functional
ξ : L1([0, 1]) → R given by

ξ(v) :=
∫ 1

2

0
v(x) dx, ∀ v ∈ L1([0, 1]).

It is straightforward that ξ ∈ (L1([0, 1]))∗. We claim that ξ /∈ ran(T ), which would
produce a contradiction. Indeed, assume that there exists u ∈ C0([0, 1]) such that∫ 1

2

0
v(x) dx = ξ(v) = (Tu)(v) =

∫ 1

0
u(x)v(x) dx, ∀ v ∈ L1([0, 1]).

This implies ∫ 1

0
(u(x) − χ[0, 1

2 ])v(x) dx = 0, ∀ v ∈ L1([0, 1]),

where χ[0, 1
2 ] denotes the indicator function of the interval [0, 1

2 ]. By the fundamental
lemma of calculus of variations this implies that u = χ[0, 1

2
a.e. on [0, 1] and this

contradicts the continuity of u.
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