Exercise 6.1 Let H be a separable infinite-dimensional Hilbert space with complete orthonormal basis $(e_i)_{i \in \mathbb{N}}$. Suppose $A \colon H \to H$ is a bounded linear map with the property that

$$||A||_{HS}^2 := \sum_{i=1}^{\infty} ||Ae_i||_H^2 < \infty.$$

Operators A with this property are called *Hilbert–Schmidt operators*, and $||A||_{HS}$ is their so-called *Hilbert–Schmidt norm*.

- (a) Prove that $||A||_{HS}$ is independent of the choice of the complete orthonormal basis.
- (b) Show that $||A||_{L(H)} \leq ||A||_{HS}$.
- (c) Find a bounded operator that is not Hilbert–Schmidt.

Exercise 6.2 Specifying Parseval's identity for the Fourier transform to f(x) = x (seen as an element of $L^2([0, 2\pi])$), show that

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

Exercise 6.3 Let $(H, (\cdot, \cdot)_H)$ be a real, infinite-dimensional Hilbert space. Let $x \in H$ and let $(x_n)_{n \in \mathbb{N}}$ be a sequence in H.

- (a) Prove that the weak convergence $x_n \xrightarrow{w} x$ in H and the convergence of the norms $||x_n||_H \to ||x||_H$ in \mathbb{R} implies (strong) convergence $x_n \to x$ in H, i.e. $||x_n x||_H \to 0$.
- (b) Suppose $x_n \xrightarrow{w} x$ and $||y_n y||_H \to 0$, where $(y_n)_{n \in \mathbb{N}}$ is another sequence in H and $y \in H$. Prove that $(x_n, y_n)_H \to (x, y)_H$.
- (c) Let $(e_n)_{n \in \mathbb{N}}$ be an orthonormal system of $(H, (\cdot, \cdot)_H)$. Prove that $e_n \xrightarrow{w} 0$.
- (d) Given any $x \in H$ with $||x||_H \leq 1$, prove that there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in H satisfying $||x_n||_H = 1$ for all $n \in \mathbb{N}$ and $x_n \xrightarrow{w} x$.
- (e) Let the functions $f_n : [0, 2\pi] \to \mathbb{R}$ be given by $f_n(t) = \sin(nt)$ for all $\mathbb{N} \setminus \{0\}$. Prove that $f_n \xrightarrow{w} 0$ in $L^2([0, 2\pi])$.

Last modified: 28 October 2022

Exercise 6.4

(a) Show that $L^{\infty}([0,1])$ is not separable.

Hint. Consider for $x_0 \in [0, 1]$ the step function $f_{x_0} \in L^{\infty}([0, 1])$, defined by $f_{x_0}(x) = 1$ for $x \leq x_0$ and $f_{x_0}(x) = 0$ for $x > x_0$.

(b) For any $1 \le p \le +\infty$, find an explicit sequence in $(L^p([0,1]), \|\cdot\|_{L^p})$ which is bounded but does not have a convergent subsequence.