Exercise 6.1 Let H be a separable infinite-dimensional Hilbert space with complete orthonormal basis $\left(e_{i}\right)_{i \in \mathbb{N}}$. Suppose $A: H \rightarrow H$ is a bounded linear map with the property that

$$
\|A\|_{H S}^{2}:=\sum_{i=1}^{\infty}\left\|A e_{i}\right\|_{H}^{2}<\infty .
$$

Operators A with this property are called Hilbert-Schmidt operators, and $\|A\|_{H S}$ is their so-called Hilbert-Schmidt norm.
(a) Prove that $\|A\|_{H S}$ is independent of the choice of the complete orthonormal basis.
(b) Show that $\|A\|_{L(H)} \leq\|A\|_{H S}$.
(c) Find a bounded operator that is not Hilbert-Schmidt.

Solution.

(a) Notice that since A is bounded, by Exercise 5.1 A has a well-defined, bounded adjoint operator A^{*}. Let $\left(e_{i}\right)_{i \in \mathbb{N}}$ and $\left(\tilde{e}_{i}\right)_{i \in \mathbb{N}}$ be two (possibly coinciding) complete orthonormal basis of H. Then, by Parseval's identity we have

$$
\begin{equation*}
\sum_{i=0}^{+\infty}\left\|A \tilde{e}_{i}\right\|_{H}^{2}=\sum_{i=0}^{+\infty} \sum_{j=0}^{+\infty}\left|\left(A \tilde{e}_{i}, e_{j}\right)_{H}\right|^{2}=\sum_{i=0}^{+\infty} \sum_{j=0}^{+\infty}\left|\left(\tilde{e}_{i}, A^{*} e_{j}\right)_{H}\right|^{2}=\sum_{j=0}^{+\infty}\left\|A^{*} e_{j}\right\|_{H}^{2} . \tag{1}
\end{equation*}
$$

By exploiting (1) with $\tilde{e}_{i}=e_{i}$ for every $i \in \mathbb{N}$ we get

$$
\sum_{i=0}^{+\infty}\left\|A e_{i}\right\|_{H}^{2}=\sum_{i=0}^{+\infty}\left\|A^{*} e_{i}\right\|_{H}^{2} .
$$

The statement follows.
(b) Given any $x \in H$ such that $\|x\|_{H}=1$ we extend x to a complete orthonormal basis $\left\{x, e_{1}, e_{2}, \ldots\right\}$ of H. Then, by definition and point (a), we get

$$
\|A x\|_{H}^{2} \leq\|A x\|_{H}^{2}+\sum_{i=1}^{+\infty}\left\|A e_{i}\right\|_{H}^{2}=\|A\|_{H S}^{2}
$$

Hence, we have $\|A x\|_{H} \leq\|A\|_{H S}$, for every $x \in H$ such that $\|x\|_{H}=1$. By taking the supremum over x in the previous inequality, the statement follows.
(c) The identity operator does the job.

[^0]Exercise 6.2 Specifying Parseval's identity for the Fourier transform to $f(x)=x$ (seen as an element of $L^{2}([0,2 \pi])$), show that

$$
\sum_{k=1}^{+\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} .
$$

Solution. Recall that a Hilbertian basis of $L^{2}([0,2 \pi])$ is given by

$$
\left\{\frac{1}{\sqrt{2 \pi}}\right\} \cup\left\{\frac{1}{\sqrt{\pi}} \cos (k x)\right\}_{k \geq 1} \cup\left\{\frac{1}{\sqrt{\pi}} \sin (k x)\right\}_{k \geq 1}
$$

Hence, we have

$$
\frac{(2 \pi)^{3}}{3}=\|f\|_{L^{2}([0,2 \pi])}^{2}=\left|a_{0}\right|^{2}+\sum_{k=1}^{+\infty}\left|a_{k}\right|^{2}+\left|b_{k}\right|^{2}
$$

with

$$
\begin{aligned}
& a_{0}=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} x d x=\frac{(2 \pi)^{\frac{3}{2}}}{2} \\
& a_{k}=\frac{1}{\sqrt{\pi}} \int_{0}^{2 \pi} x \cos (k x) d x=0 \quad(k \geq 1) \\
& b_{k}=\frac{1}{\sqrt{\pi}} \int_{0}^{2 \pi} x \sin (k x) d x=-\frac{2 \sqrt{\pi}}{k} \quad(k \geq 1) .
\end{aligned}
$$

Hence,

$$
\sum_{k=1}^{+\infty} \frac{1}{k^{2}}=\frac{1}{4 \pi}\left(\frac{(2 \pi)^{3}}{3}-\frac{(2 \pi)^{3}}{4}\right)=\frac{\pi^{2}}{6} .
$$

Exercise 6.3 Let $\left(H,(\cdot, \cdot)_{H}\right)$ be a real, infinite-dimensional Hilbert space. Let $x \in H$ and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in H.
(a) Prove that the weak convergence $x_{n} \xrightarrow{w} x$ in H and the convergence of the norms $\left\|x_{n}\right\|_{H} \rightarrow\|x\|_{H}$ in \mathbb{R} implies (strong) convergence $x_{n} \rightarrow x$ in H, i.e. $\left\|x_{n}-x\right\|_{H} \rightarrow 0$.
(b) Suppose $x_{n} \xrightarrow{w} x$ and $\left\|y_{n}-y\right\|_{H} \rightarrow 0$, where $\left(y_{n}\right)_{n \in \mathbb{N}}$ is another sequence in H and $y \in H$. Prove that $\left(x_{n}, y_{n}\right)_{H} \rightarrow(x, y)_{H}$.
(c) Let $\left(e_{n}\right)_{n \in \mathbb{N}}$ be an orthonormal system of $\left(H,(\cdot, \cdot)_{H}\right)$. Prove that $e_{n} \xrightarrow{w} 0$.

Prof. P. Hintz
Assistant: R. Caniato

Functional Analysis I
 Exercise Sheet 6

(d) Given any $x \in H$ with $\|x\|_{H} \leq 1$, prove that there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in H satisfying $\left\|x_{n}\right\|_{H}=1$ for all $n \in \mathbb{N}$ and $x_{n} \xrightarrow{w} x$.
(e) Let the functions $f_{n}:[0,2 \pi] \rightarrow \mathbb{R}$ be given by $f_{n}(t)=\sin (n t)$ for all $\mathbb{N} \backslash\{0\}$. Prove that $f_{n} \xrightarrow{w} 0$ in $L^{2}([0,2 \pi])$.

Solution.

(a) We compute

$$
\begin{equation*}
\left\|x_{n}-x\right\|_{H}^{2}=\left(x_{n}-x, x_{n}-x\right)_{H}=\left\|x_{n}\right\|^{2}+\|x\|_{H}^{2}-2\left(x_{n}, x\right)_{H} . \tag{2}
\end{equation*}
$$

We notice that

$$
\left|\left(x_{n}, x\right)-\|x\|_{H}^{2}\right|=\left|\left(x_{n}-x, x\right)_{H}\right| \rightarrow 0 \quad(n \rightarrow+\infty)
$$

because $x_{n} \xrightarrow{w} x$ in H. Hence, by passing to the limit as $n \rightarrow+\infty$ in (2) the statement follows.
(b) Since $x_{n} \xrightarrow{w} x$, we have that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded, i.e. there exists $C>0$ such that $\left\|x_{n}\right\|_{H} \leq C$ for every $n \in \mathbb{N}$. We estimate

$$
\begin{aligned}
\left|\left(x_{n}, y_{n}\right)_{H}-(x, y)_{H}\right| & =\left|\left(x_{n}, y_{n}-y\right)_{H}+\left(x_{n}-x, y\right)_{H}\right| \\
& \leq\left|\left(x_{n}, y_{n}-y\right)_{H}\right|+\left|\left(x_{n}-x, y\right)_{H}\right| \\
& \leq\left\|x_{n}\right\|_{H}\left\|y_{n}-y\right\|_{H}+\left|\left(x_{n}-x, y\right)_{H}\right| \\
& \leq C\left\|y_{n}-y\right\|_{H}+\left|\left(x_{n}-x, y\right)_{H}\right| .
\end{aligned}
$$

By weak convergence of $\left(x_{n}\right)_{n \in \mathbb{N}}$ to x and strong convergence of $\left(y_{n}\right)_{n \in \mathbb{N}}$ to y the statement follows.
(c) Notice that, by Bessel's inequality the series

$$
\sum_{n=0}^{+\infty}\left|\left(x, e_{n}\right)_{H}\right|^{2} \leq\|x\|_{H}^{2}<+\infty
$$

is convergent for every $x \in H$. Then, we conclude that $\left|\left(x, e_{n}\right)_{H}\right|^{2} \rightarrow 0$ as $n \rightarrow+\infty$ for every $x \in H$. The statement follows.
(d) Let $x \in H$ satisfy $\|x\|_{H} \leq 1$. If $x=0$, by point (c) we have that any orthonormal system does the job. If $x \neq 0$, then an orthonormal system $\left(e_{n}\right)_{n \in \mathbb{N}}$ of H with $e_{0}:=\|x\|^{-1} x$ can be constructed via the Gram-Schmidt algorithm. For $n \in \mathbb{N}$, define

$$
x_{n}:=x+\left(\sqrt{1-\|x\|_{H}^{2}}\right) e_{n+1} .
$$

Then, since $x \perp e_{n+1}$ for every $n \in \mathbb{N}$ we have $\left\|x_{n}\right\|_{H}^{2}=\|x\|_{H}^{2}+1-\|x\|_{H}^{2}=1$, for every $n \in \mathbb{N}$. Moreover, $x_{n} \xrightarrow{w} x$ follows by $e_{n+1} \xrightarrow{w} 0$.

Functional Analysis I
 Exercise Sheet 6

ETH Zürich
(e) Given $f_{n}:[0,2 \pi] \rightarrow \mathbb{R}$ as in the statement, we have that $\left(\frac{1}{\sqrt{\pi}} f_{n}\right)_{n \in \mathbb{N} \backslash\{0\}}$ is an orthonormal system of $L^{2}([0,2 \pi])$, because

$$
\begin{aligned}
\int_{0}^{2 \pi} \sin (m t) \sin (n t) d t & =\frac{1}{2} \int_{0}^{2 \pi}(\cos ((m-n) t)-\cos ((m+n) t)) d t \\
& = \begin{cases}0 & \text { if } m \neq n, \\
\pi & \text { if } m=n,\end{cases}
\end{aligned}
$$

for every $m, n \in \mathbb{N} \backslash\{0\}$. Hence, by point (c) the statement follows.

Exercise 6.4

(a) Show that $L^{\infty}([0,1])$ is not separable.

Hint. Consider for $x_{0} \in[0,1]$ the step function $f_{x_{0}} \in L^{\infty}([0,1])$, defined by $f_{x_{0}}(x)=1$ for $x \leq x_{0}$ and $f_{x_{0}}(x)=0$ for $x>x_{0}$.
(b) For any $1 \leq p \leq+\infty$, find an explicit sequence in $\left(L^{p}([0,1]),\|\cdot\|_{L^{p}}\right)$ which is bounded but does not have a convergent subsequence.

Solution.

(a) Consider for $x_{0} \in[0,1]$ the step function $f_{x_{0}} \in L^{\infty}([0,1])$, defined by $f_{x_{0}}(x)=1$ for $x \leq x_{0}$ and $f_{x_{0}}(x)=0$ for $x>x_{0}$. Consider the following family of open balls in $L^{\infty}([0,1])$:

$$
\mathscr{B}:=\left\{B_{\frac{1}{2}}\left(f_{x_{0}}\right) \text { for every } x_{0} \in[0,1]\right\},
$$

where $B_{\rho}\left(f_{0}\right):=\left\{f \in L^{\infty}([0,1])\right.$ s.t. $\left.\left\|f-f_{0}\right\|_{L^{\infty}([0,1])}<\rho\right\}$ for every $f_{0} \in L^{\infty}([0,1])$ and $\rho>0$.

Clearly \mathscr{B} is uncountable. Moreover, \mathscr{B} is made of disjoint balls because

$$
\left\|f_{x_{1}}-f_{x_{2}}\right\|_{L^{\infty}([0,1])}=1, \quad \forall x_{1}, x_{2} \in[0,1] \text { s.t. } x_{1} \neq x_{2} .
$$

Let S be any dense set in $L^{\infty}([0,1])$. Clearly S must intersect all of the open balls in \mathscr{B} by definition. This implies that S is uncountable and the statement follows.
(b) For every $n \in \mathbb{N}$ we divide $[0,1]$ into 2^{n} sub intervals $I_{1}, \ldots, I_{2^{n}}$ of equal length and we consider the function $f_{n}:[0,1] \rightarrow \mathbb{R}$ on each I_{k} to be $-\frac{1}{2}$ if k is odd and $\frac{1}{2}$ is k is even. More precisely,

$$
f_{n}(x):=\left\{\begin{aligned}
-\frac{1}{2} & \text { if } \exists k \in \mathbb{N}: 2^{n} x \in[2 k-2,2 k-1) \\
\frac{1}{2} & \text { else. }
\end{aligned}\right.
$$

By construction, $\left\|f_{n}\right\|_{L^{p}([0,1])}=\frac{1}{2}$, for every $n \in \mathbb{N}$ and for every $1 \leq p \leq+\infty$. Therefore, the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{p}([0,1])$, for every $1 \leq p \leq+\infty$. Nevertheless, for every $n, m \in \mathbb{N}$ with $n \neq m$ we have

$$
\begin{aligned}
\left\|f_{n}-f_{m}\right\|_{L^{p}([0,1])}^{p} & =\frac{1}{2} \quad \forall 1 \leq p<+\infty \\
\left\|f_{n}-f_{m}\right\|_{L^{\infty}([0,1])} & =\frac{1}{2} .
\end{aligned}
$$

Consequently, $\left(f_{n}\right)_{n \in \mathbb{N}}$ cannot have any convergent subsequence.

[^0]: Last modified: 4 November 2022

