Exercise 6.1 Let H be a separable infinite-dimensional Hilbert space with complete orthonormal basis $(e_i)_{i \in \mathbb{N}}$. Suppose $A \colon H \to H$ is a bounded linear map with the property that

$$||A||_{HS}^2 := \sum_{i=1}^{\infty} ||Ae_i||_H^2 < \infty.$$

Operators A with this property are called *Hilbert–Schmidt operators*, and $||A||_{HS}$ is their so-called *Hilbert–Schmidt norm*.

- (a) Prove that $||A||_{HS}$ is independent of the choice of the complete orthonormal basis.
- (b) Show that $||A||_{L(H)} \le ||A||_{HS}$.
- (c) Find a bounded operator that is not Hilbert–Schmidt.

Solution.

(a) Notice that since A is bounded, by Exercise 5.1 A has a well-defined, bounded adjoint operator A^* . Let $(e_i)_{i \in \mathbb{N}}$ and $(\tilde{e}_i)_{i \in \mathbb{N}}$ be two (possibly coinciding) complete orthonormal basis of H. Then, by Parseval's identity we have

$$\sum_{i=0}^{+\infty} \|A\tilde{e}_i\|_H^2 = \sum_{i=0}^{+\infty} \sum_{j=0}^{+\infty} |(A\tilde{e}_i, e_j)_H|^2 = \sum_{i=0}^{+\infty} \sum_{j=0}^{+\infty} |(\tilde{e}_i, A^*e_j)_H|^2 = \sum_{j=0}^{+\infty} \|A^*e_j\|_H^2.$$
(1)

By exploiting (1) with $\tilde{e}_i = e_i$ for every $i \in \mathbb{N}$ we get

$$\sum_{i=0}^{+\infty} ||Ae_i||_H^2 = \sum_{i=0}^{+\infty} ||A^*e_i||_H^2.$$

The statement follows.

(b) Given any $x \in H$ such that $||x||_H = 1$ we extend x to a complete orthonormal basis $\{x, e_1, e_2, \ldots\}$ of H. Then, by definition and point (a), we get

$$||Ax||_{H}^{2} \leq ||Ax||_{H}^{2} + \sum_{i=1}^{+\infty} ||Ae_{i}||_{H}^{2} = ||A||_{HS}^{2}$$

Hence, we have $||Ax||_H \leq ||A||_{HS}$, for every $x \in H$ such that $||x||_H = 1$. By taking the supremum over x in the previous inequality, the statement follows.

(c) The identity operator does the job.

 $1/_{5}$

Last modified: 4 November 2022

Exercise 6.2 Specifying Parseval's identity for the Fourier transform to f(x) = x (seen as an element of $L^2([0, 2\pi])$), show that

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

Solution. Recall that a Hilbertian basis of $L^2([0, 2\pi])$ is given by

$$\left\{\frac{1}{\sqrt{2\pi}}\right\} \cup \left\{\frac{1}{\sqrt{\pi}}\cos(kx)\right\}_{k \ge 1} \cup \left\{\frac{1}{\sqrt{\pi}}\sin(kx)\right\}_{k \ge 1}.$$

Hence, we have

$$\frac{(2\pi)^3}{3} = \|f\|_{L^2([0,2\pi])}^2 = |a_0|^2 + \sum_{k=1}^{+\infty} |a_k|^2 + |b_k|^2$$

with

$$a_{0} = \frac{1}{\sqrt{2\pi}} \int_{0}^{2\pi} x \, dx = \frac{(2\pi)^{\frac{3}{2}}}{2},$$

$$a_{k} = \frac{1}{\sqrt{\pi}} \int_{0}^{2\pi} x \cos(kx) \, dx = 0 \qquad (k \ge 1),$$

$$b_{k} = \frac{1}{\sqrt{\pi}} \int_{0}^{2\pi} x \sin(kx) \, dx = -\frac{2\sqrt{\pi}}{k} \qquad (k \ge 1).$$

Hence,

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{1}{4\pi} \left(\frac{(2\pi)^3}{3} - \frac{(2\pi)^3}{4} \right) = \frac{\pi^2}{6}.$$

Exercise 6.3 Let $(H, (\cdot, \cdot)_H)$ be a real, infinite-dimensional Hilbert space. Let $x \in H$ and let $(x_n)_{n \in \mathbb{N}}$ be a sequence in H.

- (a) Prove that the weak convergence $x_n \xrightarrow{w} x$ in H and the convergence of the norms $||x_n||_H \to ||x||_H$ in \mathbb{R} implies (strong) convergence $x_n \to x$ in H, i.e. $||x_n x||_H \to 0$.
- (b) Suppose $x_n \xrightarrow{w} x$ and $||y_n y||_H \to 0$, where $(y_n)_{n \in \mathbb{N}}$ is another sequence in H and $y \in H$. Prove that $(x_n, y_n)_H \to (x, y)_H$.
- (c) Let $(e_n)_{n\in\mathbb{N}}$ be an orthonormal system of $(H, (\cdot, \cdot)_H)$. Prove that $e_n \xrightarrow{w} 0$.

2/5

- (d) Given any $x \in H$ with $||x||_H \leq 1$, prove that there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in H satisfying $||x_n||_H = 1$ for all $n \in \mathbb{N}$ and $x_n \xrightarrow{w} x$.
- (e) Let the functions $f_n : [0, 2\pi] \to \mathbb{R}$ be given by $f_n(t) = \sin(nt)$ for all $\mathbb{N} \setminus \{0\}$. Prove that $f_n \xrightarrow{w} 0$ in $L^2([0, 2\pi])$.

Solution.

(a) We compute

$$||x_n - x||_H^2 = (x_n - x, x_n - x)_H = ||x_n||^2 + ||x||_H^2 - 2(x_n, x)_H.$$
 (2)

We notice that

$$|(x_n, x) - ||x||_H^2| = |(x_n - x, x)_H| \to 0 \quad (n \to +\infty)$$

because $x_n \xrightarrow{w} x$ in *H*. Hence, by passing to the limit as $n \to +\infty$ in (2) the statement follows.

(b) Since $x_n \xrightarrow{w} x$, we have that $(x_n)_{n \in \mathbb{N}}$ is bounded, i.e. there exists C > 0 such that $||x_n||_H \leq C$ for every $n \in \mathbb{N}$. We estimate

$$\begin{aligned} |(x_n, y_n)_H - (x, y)_H| &= |(x_n, y_n - y)_H + (x_n - x, y)_H| \\ &\leq |(x_n, y_n - y)_H| + |(x_n - x, y)_H| \\ &\leq ||x_n||_H ||y_n - y||_H + |(x_n - x, y)_H| \\ &\leq C ||y_n - y||_H + |(x_n - x, y)_H|. \end{aligned}$$

By weak convergence of $(x_n)_{n \in \mathbb{N}}$ to x and strong convergence of $(y_n)_{n \in \mathbb{N}}$ to y the statement follows.

(c) Notice that, by Bessel's inequality the series

$$\sum_{n=0}^{+\infty} |(x, e_n)_H|^2 \le ||x||_H^2 < +\infty$$

is convergent for every $x \in H$. Then, we conclude that $|(x, e_n)_H|^2 \to 0$ as $n \to +\infty$ for every $x \in H$. The statement follows.

(d) Let $x \in H$ satisfy $||x||_H \leq 1$. If x = 0, by point (c) we have that any orthonormal system does the job. If $x \neq 0$, then an orthonormal system $(e_n)_{n \in \mathbb{N}}$ of H with $e_0 := ||x||^{-1}x$ can be constructed via the Gram-Schmidt algorithm. For $n \in \mathbb{N}$, define

$$x_n := x + \left(\sqrt{1 - \|x\|_H^2}\right) e_{n+1}.$$

Then, since $x \perp e_{n+1}$ for every $n \in \mathbb{N}$ we have $||x_n||_H^2 = ||x||_H^2 + 1 - ||x||_H^2 = 1$, for every $n \in \mathbb{N}$. Moreover, $x_n \xrightarrow{w} x$ follows by $e_{n+1} \xrightarrow{w} 0$.

3/5

(e) Given $f_n : [0, 2\pi] \to \mathbb{R}$ as in the statement, we have that $\left(\frac{1}{\sqrt{\pi}}f_n\right)_{n\in\mathbb{N}\smallsetminus\{0\}}$ is an orthonormal system of $L^2([0, 2\pi])$, because

$$\int_{0}^{2\pi} \sin(mt) \sin(nt) dt = \frac{1}{2} \int_{0}^{2\pi} \left(\cos((m-n)t) - \cos((m+n)t) \right) dt$$
$$= \begin{cases} 0 & \text{if } m \neq n, \\ \pi & \text{if } m = n, \end{cases}$$

for every $m, n \in \mathbb{N} \setminus \{0\}$. Hence, by point (c) the statement follows.

Exercise 6.4

(a) Show that $L^{\infty}([0,1])$ is not separable.

Hint. Consider for $x_0 \in [0, 1]$ the step function $f_{x_0} \in L^{\infty}([0, 1])$, defined by $f_{x_0}(x) = 1$ for $x \leq x_0$ and $f_{x_0}(x) = 0$ for $x > x_0$.

(b) For any $1 \le p \le +\infty$, find an explicit sequence in $(L^p([0, 1]), \|\cdot\|_{L^p})$ which is bounded but does not have a convergent subsequence.

Solution.

(a) Consider for $x_0 \in [0, 1]$ the step function $f_{x_0} \in L^{\infty}([0, 1])$, defined by $f_{x_0}(x) = 1$ for $x \leq x_0$ and $f_{x_0}(x) = 0$ for $x > x_0$. Consider the following family of open balls in $L^{\infty}([0, 1])$:

$$\mathscr{B} := \left\{ B_{\frac{1}{2}}(f_{x_0}) \text{ for every } x_0 \in [0,1] \right\},$$

where $B_{\rho}(f_0) := \{ f \in L^{\infty}([0,1]) \text{ s.t. } \| f - f_0 \|_{L^{\infty}([0,1])} < \rho \}$ for every $f_0 \in L^{\infty}([0,1])$ and $\rho > 0$.

Clearly \mathscr{B} is uncountable. Moreover, \mathscr{B} is made of disjoint balls because

 $||f_{x_1} - f_{x_2}||_{L^{\infty}([0,1])} = 1, \quad \forall x_1, x_2 \in [0,1] \text{ s.t. } x_1 \neq x_2.$

Let S be any dense set in $L^{\infty}([0,1])$. Clearly S must intersect all of the open balls in \mathscr{B} by definition. This implies that S is uncountable and the statement follows.

(b) For every $n \in \mathbb{N}$ we divide [0, 1] into 2^n sub intervals $I_1, ..., I_{2^n}$ of equal length and we consider the function $f_n : [0, 1] \to \mathbb{R}$ on each I_k to be $-\frac{1}{2}$ if k is odd and $\frac{1}{2}$ is k is even. More precisely,

$$f_n(x) := \begin{cases} -\frac{1}{2} & \text{if } \exists k \in \mathbb{N} : 2^n x \in [2k - 2, 2k - 1) \\ \frac{1}{2} & \text{else.} \end{cases}$$

By construction, $||f_n||_{L^p([0,1])} = \frac{1}{2}$, for every $n \in \mathbb{N}$ and for every $1 \leq p \leq +\infty$. Therefore, the sequence $(f_n)_{n\in\mathbb{N}}$ is bounded in $L^p([0,1])$, for every $1 \leq p \leq +\infty$. Nevertheless, for every $n, m \in \mathbb{N}$ with $n \neq m$ we have

$$\|f_n - f_m\|_{L^p([0,1])}^p = \frac{1}{2} \qquad \forall 1 \le p < +\infty, \\ \|f_n - f_m\|_{L^\infty([0,1])} = \frac{1}{2}.$$

Consequently, $(f_n)_{n \in \mathbb{N}}$ cannot have any convergent subsequence.

5/5